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Why STS Schemes?

@ stability criteria much more practical than explicit Euler for
diffusion equations:

1

V A texplicit

2
where Ateplicit ¢ ’"T with m number of space-steps, n
number of time-steps, s number of stages.

S X

@ still explicit: easy to adapt to multi-dimensional problems and
non-linear problems
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Some STS schemes

Diffusion equation:

of
5060 = L(F(x, 1), x.1) . (1)

And the RKC, RKL, RKG schemes read (Verwer 1996, Meyer 2014)
O = (1), (2a)
Fl= o4 kL (fo) , (2b)
F1= Mg f 17 0, F172 4+ (1= Ny — vy FO

f(tjfl) = I?S, (2d)
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Some STS schemes
Runge-Kutta-Chebyshev
Let

P//(WO)
_ _nn _
by = Pl M 1— byPy(wo).

For RKC, we have for2 <n <s

b ~ A
)\7722?21W0, )\n:WzW]_,
b . .
Vp = -, n = —an-1Ay,
by—2

and wp =1 +6/S2, by = b1 = 1/3, ag =1 — bowy, :\1 = bywy,
w1 = P{(wo)/Pg(wo).
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Some STS schemes
Runge-Kutta-Legendre

a, and b, are explicit for RKL (no damping)

2
n-+n—2
= a :l_b,
T+ T !
For RKL, we have for2 <n <s
2n—1 b, -1 b
Ay = =2 2 e, ,,n:_” D
n bnfl n bnf2

and wog =1, by = by =1/3, ag =1 — bowo, A1 = bywi,
4

W1 = o213
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Some STS schemes
Runge-Kutta-Gegenbauer

For RKG a;; and b, are explicit and read

4(n—1)(n+4)

_(+1)(n+2),

b, = , ap=1 ,
T B+ ) (n+2)(n+3)" 2 !
For RKG, we have for2 <7n <s
2 1 b 1 b
DU i AR s i B
n b77*1 n bnf2

and wp = 1, bo = 1, b1 = 1/3, ap = 1—b0W0, 5\1 = wq,

w1 = (s+4)6(sfl)'
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RKL vs RKC

Damping € = 2/13

suggested in Verwer (1996). CMP = monotone with space varying coefficient.
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Fig. 11. (a) Shows the domain of stability in the complex plane for the s
dotted line represents the maximum stable time step according to the respective method.

=5 RKL2 scheme. (b) Shows the same for the damped s =5 RKC2 scheme. The
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Fig. 1. (a) Shows the aluminum/copper heat conduction solution for the damped 7-stage RKC2 scheme, with damping coefficient & =2/13. (b) Shows the

solution for the 7-stage RKL2 scheme.
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Instabilities on the Heston PDE

g—ﬁ&—l— ﬁ_{_a V32f+( ) g_i_ (9 )af f
ot~ 2 ox2 P oxov T 2 ave VT X g TRV, T

for0<t<T,x>0,v>0, with f(T,x,v) = F(x).

| —f— Foulon
| —@— O'Sullivan
| —F— Partial Exponential Fitting

10t 10? 10°
Time-steps

Convergence in time of the RKC scheme with € = 10, with the different
choices of upwinding with m = 100, .n = 50.
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Instabilities on the Heston PDE
Upwinding

Different zones:

@ Foulon and In't Hout (2010): three points upwinding is used
at v=20and for v > 1.

@ Le Floc’h (2019): exponential fitting is used when the Peclet
number P > 2 and single-sided differences are used at the
boundaries Xmin, Xmax, Vmin, Vmax-

@ O'Sullivan and O'Sullivan (2013) follow lkonen and Toivanen
(2007):0ne-sided upwinding applied anywhere the PDE

becomes convection dominated.
We use central finite differences as much as possible, but

when they lead to a positive codiagonal element we employ
first-order accurate one-sided differences for the convection
terms, that is, for the spatial first-order partial derivative
terms
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Instabilities on the Heston PDE
Exponential Fitting

The cell Péclet number P = ratio of the advection coefficient
towards the diffusion coefficient in a cell .When P > 2, the
solution may explode.

2h; 2wjk(0 — v))
PX.(B%.) = ! - — g pY.(pv.)= """ J/
l,j( Id) ﬁ,%fjvjxi (r q )’ IJ(/BIJ) 5};-02‘0
. P(1) y Pyi(1)
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Instabilities on the Heston PDE

Eigenvalues

Re(x)
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Eigenvalues of the discretization matrix with / = 16, m = 100, n = 50
using different upwinding choices. Note the imaginary axis range
difference
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Instabilities on the Heston PDE

Oscillations - RKC

Delta by forward difference for / = 10 time-steps and partial
exponential fitting on the grid m = 100, n = 50
RKC with damping shift ¢ = 10. No oscillations are visible near
v=20.
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(Left: full grid, Right: zoom on small v)
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Instabilities on the Heston PDE

Oscillations - RKL

RKL presents oscillations for a small number of steps. Not RKC

with large damping

Delta
Delta
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Instabilities on the Heston PDE

Oscillations - RKG

RKG: Very small oscillations are visible at v = 0.
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Instabilities on the Black-Scholes PDE

Oscillations

Small volatility o = 2% and large interest rate r = 10%.
Expiry barrier option which pays $1 if X(T) is between 10 and 100 and
zero otherwise, T = 1. |/ = 100 time-steps on a uniform grid with
m = 100 space steps.
No upwinding (RKL, RKG or TR-BDF2, Eigenvalues)
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Exponential fitting (P, RKL, Eigenvalues)
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upwinding important, solves the two oscillations.
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Instabilities on the Black-Scholes PDE

Gamma of American Put - The need for damping

100 time-steps and 1000 space steps with X, = 80.89 and Smax = 123.59 (3 standard deviations with o = 10%,
r = 1%). American option with strike K = 110, T = 0.5. Peclet P < 1073
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Ghost points

1210 Part Six numerical methads and programs

Option value is
to be zero here
'

This is a fictitious point |
— [

¢
—X

Figure 77.6 Afictitious point, introduced to ensure accuracy in a barrier option boundary condition.

—

ondition can be approximated by ensuring that the straight line connecting the option
at the two grid points straddling the barrier has the value f at the barrier. Then a good
ion of this boundary condition is

1
vk = ;(f—(l —a)Vi))

I =
where
Sy — (I = 1)8S
0= ——
88

Ny iha
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Ghost points with explicit schemes?

Stability condition

Black-Scholes PDE, uniform discretization. When r = g =0,
4552
S, L+ '
oRSi1 (3 + T ))

Increasingly stringeant as the grid point S, 1 moves towards L.
Let e = LT — S,_1, we have

ot <

4552 46S
= €+ O(2).
75, 315 asr, )
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What about implicit schemes?

Price of a one-touch option obtained by the Crank-Nicolson
scheme on the finite difference grid, for M = 100 space-steps and
N = 400 time-steps, close to the expiry and the barrier level.
Uniform with ghost point vs. Stretched, barrier on grid

Price
Price

TR-BDF2 no oscillations at all (excluding first two time-steps).
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Instabilities of STS schemes
Conclusions

STS are interesting in many practical cases
upwinding important but lack of damping may be a concern.
Ghost point technique should not be used with STS.

RKL, RKG interesting properties, but would those also be
achievable with a proper choice of damping coefficient in
RKC?

Don't use too many stages?
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