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Why STS Schemes?

stability criteria much more practical than explicit Euler for
diffusion equations:

s ∝ 1√
∆texplicit

where ∆texplicit ∝ m2

n with m number of space-steps, n
number of time-steps, s number of stages.

still explicit: easy to adapt to multi-dimensional problems and
non-linear problems
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Some STS schemes

Diffusion equation:

∂f

∂t
(x , t) = L (f (x , t), x , t) . (1)

And the RKC, RKL, RKG schemes read (Verwer 1996, Meyer 2014)

f̂ 0 = f (tj) , (2a)

f̂ 1 = f̂ 0 + λ̃1kjL
(
f̂ 0
)
, (2b)

f̂ η = λη f̂
η−1 + νη f̂

η−2 + (1− λη − νη)f̂
0

+ λ̃ηkjL
(
f̂ η−1

)
+ γ̃ηkjL

(
f̂ 0
)
, for 2 ≤ η ≤ s , (2c)

f (tj−1) = f̂ s , (2d)
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Some STS schemes
Runge-Kutta-Chebyshev

Let

bη =
P ′′
η (w0)

P ′
η(w0)2

, aη = 1− bηPη(w0) .

For RKC, we have for 2 ≤ η ≤ s

λη = 2
bη
bη−1

w0 , λ̃η =
λη

w0
w1 ,

νη = − bη
bη−2

, γ̃η = −aη−1λ̃η ,

and w0 = 1 + ϵ/s2, b0 = b1 = 1/3, a0 = 1− b0w0, λ̃1 = b1w1,
w1 = P ′

s(w0)/P
′′
s (w0).
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Some STS schemes
Runge-Kutta-Legendre

aη and bη are explicit for RKL (no damping)

bη =
η2 + η − 2

2η(η + 1)
, aη = 1− bη ,

For RKL, we have for 2 ≤ η ≤ s

λη =
2η − 1

η

bη
bη−1

w0 , νη = −η − 1

η

bη
bη−2

,

and w0 = 1, b0 = b1 = 1/3, a0 = 1− b0w0, λ̃1 = b1w1,
w1 =

4
s2+s−2

.
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Some STS schemes
Runge-Kutta-Gegenbauer

For RKG aη and bη are explicit and read

bη =
4(η − 1)(η + 4)

3η(η + 1)(η + 2)(η + 3)
, aη = 1− (η + 1)(η + 2)

2
bη ,

For RKG, we have for 2 ≤ η ≤ s

λη =
2η + 1

η

bη
bη−1

w0 , νη = −η + 1

η

bη
bη−2

,

and w0 = 1, b0 = 1, b1 = 1/3, a0 = 1− b0w0, λ̃1 = w1,
w1 =

6
(s+4)(s−1) .
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RKL vs RKC
Damping ϵ = 2/13 suggested in Verwer (1996). CMP = monotone with space varying coefficient.
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Instabilities on the Heston PDE

∂f

∂t
=

vx2

2

∂2f

∂x2
+ρσxv

∂2f

∂x∂v
+
σ2v

2

∂2f

∂v2
+(r−q)x

∂f

∂x
+κ(θ−v)

∂f

∂v
−rf ,

for 0 ≤ t ≤ T , x > 0, v > 0, with f (T , x , v) = F (x).

Convergence in time of the RKC scheme with ϵ = 10, with the different
choices of upwinding with m = 100, n = 50.
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Instabilities on the Heston PDE
Upwinding

Different zones:

Foulon and In’t Hout (2010): three points upwinding is used
at v = 0 and for v > 1.

Le Floc’h (2019): exponential fitting is used when the Peclet
number P > 2 and single-sided differences are used at the
boundaries xmin, xmax, vmin, vmax.

O’Sullivan and O’Sullivan (2013) follow Ikonen and Toivanen
(2007):one-sided upwinding applied anywhere the PDE
becomes convection dominated.

We use central finite differences as much as possible, but
when they lead to a positive codiagonal element we employ
first-order accurate one-sided differences for the convection
terms, that is, for the spatial first-order partial derivative
terms
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Instabilities on the Heston PDE
Exponential Fitting

The cell Péclet number P = ratio of the advection coefficient
towards the diffusion coefficient in a cell .When P > 2 , the
solution may explode.

Px
i ,j(β

x
i ,j) =

2hi
βx
i ,jvjxi

(ri − qi ) , Pv
i ,j(β

v
i ,j) =

2wjκ(θ − vj)

βv
i ,jσ

2vj
.

βx
i ,j =

Px
i ,j(1)

2 tanh
(
Px
i,j (1)

2

) , βv
i ,j =

Pv
i ,j(1)

2 tanh
(
Pv
i,j (1)

2

) ,
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Instabilities on the Heston PDE
Eigenvalues

Eigenvalues of the discretization matrix with l = 16,m = 100, n = 50
using different upwinding choices. Note the imaginary axis range

difference
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Instabilities on the Heston PDE
Oscillations - RKC

Delta by forward difference for l = 10 time-steps and partial
exponential fitting on the grid m = 100, n = 50
RKC with damping shift ϵ = 10. No oscillations are visible near

v = 0.
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(Left: full grid, Right: zoom on small v)
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Instabilities on the Heston PDE
Oscillations - RKL

RKL presents oscillations for a small number of steps. Not RKC
with large damping
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Instabilities on the Heston PDE
Oscillations - RKG

RKG: Very small oscillations are visible at v = 0.
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Instabilities on the Black-Scholes PDE
Oscillations

Small volatility σ = 2% and large interest rate r = 10%.
Expiry barrier option which pays $1 if X (T ) is between 10 and 100 and

zero otherwise, T = 1. l = 100 time-steps on a uniform grid with
m = 100 space steps.

No upwinding (RKL, RKG or TR-BDF2, Eigenvalues)

Exponential fitting (P, RKL, Eigenvalues)

upwinding important, solves the two oscillations.
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Instabilities on the Black-Scholes PDE
Gamma of American Put - The need for damping

100 time-steps and 1000 space steps with xmin = 80.89 and Smax = 123.59 (3 standard deviations with σ = 10%,

r = 1%). American option with strike K = 110, T = 0.5. Peclet P < 10−3
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Ghost points
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Ghost points with explicit schemes?
Stability condition

Black-Scholes PDE, uniform discretization. When r = q = 0,

δt ≤ 4δS2

σ2
kS

2
u−1

(
3 + Su−L+

(L+−Su−1)

) .

Increasingly stringeant as the grid point Su−1 moves towards L+.
Let ϵ = L+ − Su−1, we have

4δS2

σ2
kS

2
u−1

(
3 + δS−ϵ

ϵ

) =
4δS

σ2
kS

2
u−1

ϵ+O(ϵ2) .
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What about implicit schemes?

Price of a one-touch option obtained by the Crank-Nicolson
scheme on the finite difference grid, for M = 100 space-steps and
N = 400 time-steps, close to the expiry and the barrier level.

Uniform with ghost point vs. Stretched, barrier on grid
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TR-BDF2 no oscillations at all (excluding first two time-steps).

Fabien Le Floc’h Instabilities in Explicit Super-Time-Stepping Schemes



Instabilities of STS schemes
Conclusions

STS are interesting in many practical cases

upwinding important but lack of damping may be a concern.

Ghost point technique should not be used with STS.

RKL, RKG interesting properties, but would those also be
achievable with a proper choice of damping coefficient in
RKC?

Don’t use too many stages?
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