イロン 不良 とくほう 不良 とう

Option Hedging using Explainable Artificial Intelligence (X Hedging) International Conference on Computational Finance (ICCF 24) April 2024. Amsterdam

Bjørn André Aaslund¹, Johannes Berge¹, Ying Ni², Rita Pimentel¹

¹ Norwegian University of Science and Technology
² Division of Mathematics and Physics, Mälardalen University, Sweden

20th March 2024

Option Hedging using Explainable Artificial Intelligence (X-hedging)

AI in option hedging

An Explainable AI Hedging Framework, X Hedging X Hedging Framework Results and Discussion

Explainability

Global Explainability Local Explainability of X-hedging

AI in option hedging

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

AI in option hedging

3/30

э

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○

Option Hedging

- Seller (writer) of an option has obligation if the option buyer (holder) exercise.
- Option sellers need to offset this risk.
- Hedging = risk reduction: buying or selling a certain amount of the opposite position via a hedging instrument.
- For market-makers: reduce risk by hedging, profit from bid-ask spread.

NTNU

Conclusion 00

AI in Finance- Machine learning (ML)

" Econometrics might be good enough to succeed in financial academia (for now), but succeeding in practice requires ML "

- Marcos López de Prado (2018)

López de Prado, Marcos (2018). Advances in Financial Machine Learning. Hoboken, NJ: John Wiley & Sons.

Explainabilit

Conclusion

EU: The Ethics Guidelines for Trustworthy AI

NTNUFigure reprinted from Ethics Guidelines for Trustworthy AI.

Mälardalens universitet

イロン イボン イヨン イヨン 三日

State-of-art

- Deep Hedging (neural networks): produce hedging strategies for any environment, but lacks explainability.
- Explainability within AI (XAI): to meet new demands of guidelines and regulations (Prenio and Yong 2021).
- Explainability and transparency: an important factor in AI principles by OECD, G20, EU, Germany, Hongkong, Singapore and US.
- Deep Hedging: does not achieve *local explainability* (explainability of individual decisions within a model).

Prenio, J. & Yong, J. (2021). Humans keeping AI in check–emerging regulatory expectations in the financial sector. Bank for International Settlements.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

X Hedging: An Explainable Artificial Intelligence Hedging Framework

AI	in	option	hedging	
oc	00	oô	0 0	

X Hedging Framework

Hedging positions

- ► Hedge against: a liability *Z* with maturity *T* (in our example European call option).
- Hedging occurs at discrete time steps $t_o = 0, t_1, \dots, t_k, \dots, t_n = T$.
- Hedging by: long $\delta_k \in \mathbb{R}$ units of hedging instrument S_k at time t_k .

Hedging positions:

$$(\boldsymbol{\delta}\cdot\boldsymbol{S})_T := \sum_{k=0}^{n-1} \delta_k \cdot (S_{k+1} - S_k),$$

AI	in	option	hedging	
00	0	oô	00	

イロト 不得 とくほと くほとう

X Hedging Framework

Market frictions

- can account for market frictions such as transaction costs and liquidity constraints.
- ► Total sum of the market frictions is:

$$C_T(\delta) := \sum_{k=0}^n c_k (\delta_k - \delta_{k-1}).$$

10/30

3

AI	in	option	hedging	
oc	0	0Ô		

イロト イポト イヨト イヨト

Conclusion 00

X Hedging Framework

Fixed and proportional transaction costs

Fixed transaction costs:

$$c_k(x) := \kappa \mathbb{1}_{|x| \ge \varepsilon},$$

• cost constant:
$$\kappa > 0$$
.

• hedging strategy change threshold: ε .

► Indicator function for threshold: 1.

Proportional transaction costs:

$$c_k(x) := \kappa S_k |x|.$$

AI in option hedging 00000	An Explainable AI Hedging Framework, X Hedging ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Explainability 000 0	Conclusion 00
X Hedging Framework			

Final profit and loss (P&L)

Final P&L is given by the total portfolio position of the hedger at time step T

$$P\&L_T(Z,p,\delta) := -Z + p + (\delta \cdot S)_T - C_T(\delta),$$

- ▶ *p*: initial cash injection (option premium received by the hedger);
- Z: payoff of the liability is Z;
- If $P\&L_T < 0$: losses;
- ► Goal of the hedger: minimize the expected value of a loss function *ℓ* associated with the P&L, i.e.

$$\pi := \inf_{\delta} \mathbb{E}[\ell(\mathsf{P}\&\mathsf{L}_T(Z,p,\delta))].$$

12/30

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

AI	in	option	hedging
oc	0	0Ô	

Explainabilit

Conclusion 00

X Hedging Framework

NTNU

Methodology, X Hedging Framework

AI	in	option	hedging	
oc	0	oô	0 0	

イロト 不得 とくほと くほとう

Conclusion 00

X Hedging Framework

X Hedging: A novel hedging model

- Consisting of multiple LightGBM models.
- **Step 1:** fit all LightGBM models sequentially for one iteration.
- Step 2: train each model in random order to introduce stochasticity (inspired by SGD).

AI	in	option	hedging
00	00	0Ô	

X Hedging Framework

X Hedging: A novel hedging model

- Consisting of multiple LightGBM models.
- **Step 1:** fit all LightGBM models sequentially for one iteration.
- Step 2: train each model in random order to introduce stochasticity (inspired by SGD).
- Gradients and Hessians: use a computational graph conducting automatic differentiation.
- Smooth the regression lines by LightGBM models using a Savitzky–Golay filter.

AI	in	option	hedging	
00	0	oô	00	

Conclusion 00

15/30

X Hedging Framework

Loss functions

1. MSE (supervised learning)

$$MSE(Y) = \frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_i - Y_i)^2, \qquad (1)$$

where N is the number of samples, \hat{Y}_i are the estimated target values, and Y_i are the true target values.

2. Quadratic CVaR (reinforcement learning)

Quadratic CVaR_{$$\alpha$$} = $\frac{1}{|Y'|} \sum_{y' \in Y'} (y')^2$. (2)

ヘロン 人間 とくほ とくほ とう

AI	in	option	hed	gin	g
00	0	oô		<u> </u>	~

イロト 不得 とくほと くほとう

Results and Discussion

Experiments

The performance of X Hedging is compared to Deep Hedging and the benchmark BS delta-hedging formulas (for cases with no market frictions and proportional transaction costs).

- Experiment 1: No market frictions and MSE as loss function.
- Experiment 2: Proportional transaction costs and Quadratic CVaR as loss function.

AI	in	option	hedging	
oc	0	oô	0 0	

Results and Discussion

Parameters

S_0	K	r	λ	σ	T	п	N
1	1	0.0	0.0	0.2	1	10	20000

Data leaf	Leaves	Boost rounds	Learn rate	Early stop	Iter
5	10 + j	10 + 5j	0.1	10	15

Act. fun	Optimizer	Learn rate	Neurons	Batch size	Epochs
tanh	Adam	0.01	32	1024	10000

AI in option hedging

Results and Discussion

Experiment 1: No market frictions, MSE as loss function

Histograms for X Hedging (XH), Deep Hedging (DH), and BS Hedging Medicent NTNU(BS)

AI	in	option	hedging	
oc	0	oô	00	

イロト 不得 とくほと くほとう

Results and Discussion

Experiment 1:No market frictions, MSE as loss function

	Mean	$\mathbf{St.Dev}$	$\mathbf{JS}(\mathbf{DH} \mathbf{z})$	$\mathbf{JS}(\mathbf{XH} \mathbf{z})$	Time
BS	-0.000192	0.021327	0.000437	0.000398	10.0
\mathbf{DH}	-0.000152	0.021415	-	0.000632	803.0
\mathbf{XH}	-0.000146	0.021482	-	-	872.0

JS-divergence values: compute how close two probability distributions are.

AI in option hedging

An Explainable AI Hedging Framework, X Hedging

Explainability

Conclusion

Results and Discussion

Experiment 1: No market frictions, MSE as loss function

20/30

Mälardalens universitet

э

AI	in	option	hedging
oc	0	oô	0 0

Results and Discussion

Experiment 2: proportional transaction costs and Quadratic CVaR as the loss function

universite

AI	in	option	hedging
oc	0	0Ô	

イロト イロト イヨト イヨト

Results and Discussion

Experiment 2: Proportional transaction costs and Quadratic CVaR as the loss function

	Mean	\mathbf{Std}	$\mathbf{JS}(\mathbf{DH} \mathbf{z})$	$\mathbf{JS}(\mathbf{XH} \mathbf{z})$	Time
BS-L DH	-0.006963 -0.006747	$0.022263 \\ 0.022440$	0.00294	$0.002170 \\ 0.001093$	$\begin{array}{c} 10.0\\ 860.0\end{array}$
\mathbf{XH}	-0.006626	0.022412	-	-	833.0

22/30

э

AI in option hedging

Explainabilit

Conclusion 00

Results and Discussion

Experiment 2: Proportional transaction costs and Quadratic CVaR as the loss function

AI	in	option	hedging	
00	0	oô	0 0	

イロン イボン イヨン イヨン 三日

Conclusion 00

24/30

Results and Discussion

Summary: X Hedging v.s. Deep Hedging

- Both produce very similar results, and both are still satisfactory compared to benchmark analytical BS hedging.
- The hedging strategies are very similar to the later time steps. They are more dissimilar in the early time steps.
- In Experiment 2, all histograms are shifted to the left, indicating more losses (which is natural since a transaction cost is induced on every transaction).
- In conclusion, X Hedging performs on par with Deep Hedging and benchmark BS hedging.

AI	in	option	hedging	
oc	0	0Ô		

An Explainable AI Hedging Framework, X Hedging

イロト イポト イヨト イヨト

э

25/30

Conclusion

Global Explainability

SHAP decision plot for XH, DH and BS

AI	in	option	hedging	
oc	00	0Ô		

Global Explainability

Sensitivity analysis when S_5 is changed and reverse after that

AI	in	option	hedging
00	00	0Ô	

An Explainable AI Hedging Framework, X Hedging

Explainability

Conclusion

Global Explainability

Sensitivity analysis on a small change in S_5 and parallel changes from there

AI	in	option	hedging	
oc	0	0Ô		

Local Explainability of X-hedging

Local explainability: one decision tree visualised at k = 9

イロト 不得 とくほと くほとう

Conclusion

- We proposed a novel option hedging framework, termed *X Hedging*.
- X Hedging is
 - a general framework that can handle different market frictions.
 - comparable to deep-hedging (using a neural network) in terms of performance.
 - inherently explainable.

29/30

3

AI in option hedging

イロト イポト イヨト イヨト

Thank you for your attention!

30/30

э