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Objectives of the paper

@ Objectives:

o We examine optimal debt contracts in a dynamic model with a finite
maturity date and a continuous coupon payments.

e The valuation formulas for the equity and debt values.

e The value of equity has an early default premium representation where
the endogenous default boundary solves a recursive integral equation.

e The debt value is given by the representation that involve a local time
term.

o We develop a numerical algorithm that employs these characterizations.

o Context:

o Classical paper by Leland (1994) and subsequent literature assume
perpetual contracts for tractability reasons.
e Finite maturity contracts involve time-dependent problems.
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@ Let us assume that the firm at time t produces the cash flow at rate
X; that follows

under the risk-neutral measure Q, where yt=r — 9 < r is the
risk-neutral drift, § is the payout ratio, and o > 0 is the volatility.

@ Now we consider the coupon-bearing bond that pays continuously
coupons at rate ¢ until the maturity date T > 0 at which there is
principal repayment of P > 0 and after that it becomes all-equity firm
with the after-tax value

UXT)=(1—-0)ET [/:O e_’(s_T)Xsds] =(1-0)Xr/s. (2

@ The parameter 6 € (0,1) is the tax rate, and we suppose the debt is
not callable.
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Equity value

@ Then the equity holders solve the following optimal default problem

E(Xo;c,P) = sup E[/ e (1 —0)(X; — c)dt (3)
T€[0,T] 0

+ e (UX(T)) - P)* /T:T]

where supremum is taken over the set of stopping times with values
in [0, T] and I.—1 is the indicator of the event the default has not
happened before T.

@ The intuition behind (3) is the following: until default time 7 the
equity holders collect cash flows at X; and pay coupon c. If they do
not default before T, they have option to extend the ownership of
firm and get the present value of future cash flows U(X7) but for this
the face value P must be paid. If 7 < T, the firm’'s assets are
transferred from equity holders to debt holders.
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Debt value

e Given optimal default (random) time 74, we have that the debt value
is given by

D(Xo;c,P) =E

Td
/ e "edt + e (1 — a)U(Xp )y T (4)
0
+ e_’T (P/Q/A + (1 - a)U(XT)IA) : I‘f‘d=T

where « is the bankruptcy cost and A := {U(X7) < P} is the event
of default at time T.
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Equity value

@ We postulate that there exists an optimal default boundary b on

[0, T]. Then given the boundary b, the equity value can be computed
as follows.

@ The equity value E(t, x) and free boundary b(t) solve

E. + jxEs + %U2X2EXX (1= 0)(x—c)=rE, x> b(t),te[0,T)
E(t,b(t))=0, te]0,T) (5)
Ex(t,b(t)) =0, te[0,T) (6)
E(T,x)=(UKx)—P)", x>0 (7)
b(T) = min(c, P/k) (8)
E(t,x)=0, te][0,T),x < b(t). (9)
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Equity value

@ The benchmark strategy is to wait and not default until T so that the
associated value at time t € [0, T) is given by

EW(t7 Xt; G, K)

;
= K, [/ e (1 = 0)(X, — )du+ e Tk (X — K)*]
t

T
= (1-6)E, [/ (e(”_r)(“—t)Xt _ ce‘r(“—t))dt] + kC(t, X;)

t

= (1-0) (Xt(l —er=N(T=1)) _ (1 — e_’(T_t))> + Kk C(t, X;)

where k = (1 —0)/(r — ), K = P/k and C(t, X;) is the time-t
European call option price under Black-Scholes model with maturity
T and strike K.
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Equity value

@ This strategy is sub-optimal and the early default premium can be
found as

7(t, Xe; by c) = Byt [/T e "= (1 — ) (c — X, )I(Xy < b(u))du] (10)

@ The intuition is the following: when it is optimal to default, i.e.,
(X, < b(u)) the benefits of default are (1 — 0)(c — X,). We then
discount these benefits and integrate over [t, T], and take expected
value.
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EDP formula

@ The equity value is given by early default premium formula

E(t,Xt; c, K)
= Eu(t,Xs;c,K)+7(t, Xs; b, €)

-
= kC(t, X;) + Eq [/ e (=01 — 9)(X, — ) (X, > b(u))du}
= KC(t, X:) + (1 — 0)X; /T == N(d*(X,, b(u), u — t))du

- e)c/tT == N(d~ (Xe, b(u), u — £))du

where N is the standard normal cdf and

1 X o2
d¥(x,y,v) = U—W (Iog y + (u + 2) v)
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Optimal default boundary

@ To characterize the default boundary, we can recall the value
matching condition at X; = b(t), i.e.,

E(t, b(t);c,K) =0 (11)

and hence we get the Volterra integral equation for b(t)

C(t. b(t)) + b(t) / " elb 5 (b(), B(u), 1 )

r—up t

.
- c/t === (b(t), b(u), u — t)du

0=

for t € [0, T) with b(T—) = min(c, K). Once we solve the integral
equation, we obtain the equity value using the EDP above.
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Optimal default boundary
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Figure: This figure displays the default boundary. Parameters are
0 =0.2;r=0.05p=0.02;P=100;c =12;0 =0.3; T =50.
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Equity value
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Figure: This figure illustrates the effect of ¢ (¢ = 8 (blue), ¢ = 12 (black), ¢ = 16
(red)) on the equity value. Parameters are r = 0.05, = 0.02, ¢ = 0.3, P = 100,
c=12, T =5 years, § =0.2.
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PDE for debt value

@ Given the fixed boundary b(t), the debt value D(t, x) satisfies

D; + jixDx + %U2X2DXX be=rD, x>b(t)te0,T) (12)
D(t,b(t)) = (1 —a)U(b(t)), te][0,T) (13)
D(t,x)=(1—-a)U(x), te]0,T), x<b(t) (14)
D(T,x) =P lyx>p + (1 —a)UX)lyxy<p, x>0 (15)
b(T) = min(c, P/k). (16)

where U is an all-equity firm value
U(x)=(1-0)x/6, x>0. (17)
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Debt value

@ Now let us apply the local time-space formula for e—r(T—t)D(T,XT)
e " (T=9D(T, X7) (9)
-
—D(t,x) - / e " 0el(X, > b(u))du
t
-
ot <
t

_
Mt / e "= (Dy(u, b(u)+) — (1 - a)r)dE4(X)

where M is the martingale and ¢2(X) is the local time of X at the
curve b, given by

t
rXxX)=@Q- '238215 i I(b(s) —e < Xs < b(s) +¢)d(X, X)s.
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Debt value

@ Now by taking the expected value on both sides, using the optional
sampling theorem, and inserting x = b(t), we obtain

Eepeyle” T OD(T, X7)] (19)
T
=(1—a)(1 = 0)b(t)/6 — E¢ ps) Ut e "=l (X, > b(u))du]

B | [ " e 01— a)(1 - 0)X,(X, < b))

T —alL~
+ ;/t e "= (Dy(u, b(u)+) — W)dEt,b(t)[eg(X)]

for t €0, T].

@ This gives us linear Volterra equation of the first kind for
D, (t, b(t)+) which we can solve numerically by backward induction.
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Debt value

o We note that dE; [¢2(X)] = K(t, x; u)du, where

log (b(u)/x) — <r —0— 072> (u—t) ab(u)
B ovu—t u—t

(20)

K(t,x;u)=¢

and ¢(-) is the probability density of function of N(0, 1),
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Delta of debt value at b(t)+

o Alternatively, we write

D(t,x) =F(t,x) (21)
L
-3 / (Dx(u, b(u)+)— (1 — a)(1 — 6)/6)
x K(t,x; u)du

for known function F.

@ Taking the derivative with respect to x and evaluating this expression
at x = b(t)+ gives linear Volterra equation of the second kind

Dy (t, b(t)+) =Fx(t, b(t)+) (22)

;
_ ;/t e "=0(D, (u, b(u)+) — (1 — a)(1 — 6)/3)

x K(t, b(t)+; u)du.
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Delta of debt value at b(t)+
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Figure: This figure plots the debt delta D, (t, b(t)+) along the boundary b as the
function of t for ¢ = 8 (blue), ¢ =12 (black), ¢ = 16 (red). Parameters are
r=0.05, t=0.02, 0 =03, P=100, T =5 years, 8 = 0.2, «a = 0.3
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Debt value

@ Once we recover Dy(t, b(t)+), we can compute the debt value as
D(t, x)

-
:Et,x[e_r(T_t)D(T,XT)] + By x [/ e—r(u—t)c/(Xu > b(u))du}
t

+Eex [ /t " e 01— )1 - 8)X, (X, < b(u))du]

-
- ;/ e ") (Dy(u, b(u)+) — (1 — @)(1 — 0)/8)K(t, x; u)du

t
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Debt value
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Figure: This figure illustrates the effect of ¢ (¢ = 8 (blue), ¢ = 12 (black), ¢ = 16
(red)) on the debt value. Parameters are r = 0.05, ;= 0.02, 0 = 0.3, P = 100,
c=12, T =5years, # =0.2, « =0.3.
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Barrier options

@ Similar idea has been applied by Mijatovic (2010) for pricing of barrier
options.

@ Let us consider the down-and-out barrier call option under
Black-Scholes model with the value function V/, strike K and the
barrier H(t) < K

1
Vi + uxViy + §U2x2 Vix =rV, x> H(t),t€[0,T)

(23)
V(t,H(t))=0, te][0,T) (24)
V(t,x)=0, te€l0,T),x<H(t) (25)
V(T,x)=(x—K)t, x>0 (26)
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Barrier options

o Now let us apply the local time-space formula for e="(7—t) V(T,XT)

e " T=Ov(T, X7) (27)

.
:V(t,x)+/ e "L — r)V(u, X,)du
t

-
+ M+ + % / e~r(u=t) Vi (u, H(u)_’_)dg“H(X)
t

where M is the martingale and ¢/(X) is the local time at H.

@ Now by taking the expected value on both sides, using the optional
sampling theorem, and inserting x = H(t), we obtain
Eenenle™ T (X — K)*] (28)
1T
5 [ e IVLu HH B g (X
t

for t €0, T].
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Barrier options

@ This gives us linear Volterra equation of the first kind for
Vi (t, H(t)+) which we can solve numerically by backward induction.

@ Once we recover V,(t, H(t)+), we can compute the barrier option
premium as

V(t,x) =Eexle T (X7 — K)*]
T
— ;/ e "=V, (u, H(u)K(t, x; u)du

t
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Thank you!

Yerkin Kitapbayev (K
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