

Convergence Analysis

Numerical Experiments

Conclusion

Outline

Introduction

Willow tree method

Heston stochastic local volatility model¹

Wei Xu

Department of Mathematics Toronto Metropolitan University (Formerly Ryerson University) Toronto, ON., Canada,

ICCF 2024, April 2nd, 2024.

¹joint work with Jiaxin Gong and Junmei Ma. 🛛 🗤 🖘 🖉 🖉 🖉 🖉

Outline	Introduction	Willow tree method	Convergence Analysis	Numerical Experiments	Conclusion
Outl	ine				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1 Introduction

- **2** Willow tree method
- **③** Convergence Analysis
- **4** Numerical Experiments
- **6** Conclusion

Option and its models

- Call/Put option: holder has the *right* to buy/sell an underlying asset (S_t) at a predetermined price (Strick price K) in future (Maturity T) from the writer.
- European/American Option
- Black-Sholes Model (1979)

$$dS_t = rS_t dt + \sigma S_t dW,$$

where r is the risk-free interest rate, σ is the volatility of S_t and dW is a Brownian motion

- Heston stochastic volatility (SV) model (1991)
- Stochastic local volatility (SLV) model (1999)

Non-parametric Heston-Duprie SLV model

. The underlying asset S_t satisfying following stochastic differential equation(SDE):

$$\begin{cases} dS_t = rS_t dt + L(t, S_t) \sqrt{v_t} S_t dW_t^1, \\ dv_t = \kappa \left(\theta - v_t\right) dt + \sigma_v \sqrt{v_t} dW_t^2. \end{cases}$$
(2.1)

where v_t is the variance of S_t , r is the risk-free interest rate; κ is the mean-reversion speed of the variance; θ is the long-term mean variance and σ_v is the volatility of variance. The correlation between two driven Brownian motions is ρ .

Remark: It collapses to many popular SV or SLV models when the leverage function $L(t, S_t)$ defined in some special forms.

Leverage function $L(t, S_t)$

. Without assuming any particular from, the leverage function satisfies

$$L^{2}(t, K) = \frac{\frac{\partial C(t, K)}{\partial t} + rK \frac{\partial C(t, K)}{\partial K}}{\frac{1}{2}K^{2} \frac{\partial^{2} C(t, K)}{\partial K^{2}} \mathbb{E}[v_{t} \mid S_{t} = K]} := \frac{\sigma_{LV}^{2}(t, K)}{\mathbb{E}[v_{t} \mid S_{t} = K]},$$

where C(t, K) is the European call option matured at t with strike price K, and $\sigma_{LV}(t, K)$ is called Duprie's local volatility, which is in the form of

$$\sigma_{LV}^{2}(t,K) = \frac{\sigma_{I}^{2}(t,K) + 2t\sigma_{I}(t,K)\left(\frac{\partial\sigma_{I}}{\partial t} + rK\frac{\partial\sigma_{I}}{\partial K}\right)}{\left(1 + d_{1}K\sqrt{t}\frac{\partial\sigma_{I}}{\partial K}\right)^{2} + K^{2}\sigma_{I}(t,K)t\left(\frac{\partial^{2}\sigma_{I}}{\partial K^{2}} - d_{1}\sqrt{t}\left(\frac{\partial\sigma_{I}}{\partial K}\right)^{2}\right)},$$

where $\sigma_l(t, K)$ is the implied volatility and $d_1 = \frac{\ln(\frac{s_0}{\kappa}) + (r + \frac{1}{2}\sigma_l^2(t, K))t}{\sigma_l(t, K)\sqrt{t}}$.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Stochastic volatility inspired (SVI) model

. Given a maturity T_n , the SVI model of implied volatility $\sigma_I(t, K)$ is

$$\sigma_I^{SVI}(t,x) = \sqrt{\frac{\alpha_n + \beta_n \left[\rho_n \left(x - m_n\right) + \sqrt{\left(x - m_n\right)^2 + \zeta_n}\right]}{t}},$$

where $\alpha_n, m_n \in \mathcal{R}, \beta_n \ge 0, |\rho_n| < 1, \zeta_n > 0$, and $x = \ln\left(\frac{\kappa}{S_0}\right)$.

æ

SVI curves of SPX on Feb 21, 2018.

- Proposed by [Curran, 2001], but improved by [Xu et al., 2013].
- Applicable to various continuous models, such as diffusion models and Levy models, and discrete models, such as GARCH models, in option pricing and risk management.

Willow Tree Construction

. Two main steps: tree node pairs (S_i^n, v_{i1}^n) , and transition probability $\mathbf{P}^n = [p_{ij}^n], i, j = 1, 2, \cdots, m_v \cdot m_x, n = 1, 2 \cdots, N.$

Let
$$X_t = \ln S_t$$
, we have

$$\begin{cases}
dX_t = \left(r - \frac{1}{2}L^2(t, e^{X_t})v_t\right)dt + L(t, e^{X_t})\sqrt{v_t}dW_t^1 \\
dv_t = \kappa(\theta - v_t)dt + \sigma_v\sqrt{v_t}dW_t^2.
\end{cases}$$
(3.2)

• Given v_t , the first four moments of X_t can be evaluated

$$\mathbb{E}\left[(X_t)^d \mid v_t\right] = \sum_{k=0}^{\mathcal{K}} \left\{ \mathcal{L}^k \left[(X_t)^d \right] \right\}_{t=0} \frac{t^k}{k!} + R_{\mathcal{K}+1}, \quad d = 1, 2, 3, 4,$$

where the operator $\mathcal L$ and residual are in the form of

$$\mathcal{L} = \left(r - \frac{1}{2}L^2\left(t, e^{X_t}\right)v_t\right)\frac{\partial}{\partial X_t} + \frac{1}{2}L^2\left(t, e^{X_t}\right)v_t\frac{\partial^2}{\partial X_t^2}$$

and

•

$$\mathcal{R}_{\mathcal{K}+1} = rac{t^{\mathcal{K}+1}}{(\mathcal{K}+1)!} \mathbb{E}\left\{\mathcal{L}^k\left[(X_{\mathcal{E}})^d
ight]
ight\}, \hspace{1em} 0 \leq \xi \leq t.$$

 $) \land (\mathbb{P})$

Tree nodes construction $(X_i^n, v_{i_1}^n)$

- Given v_t following a CIR model, the first four moments of v_t can be evaluated analytically[Wang and Xu, 2018].
- At t_n, m_v discrete values of v_t can be generated by the Johnson curve [Johnson, 1949] to match the first four moments of v_{t_n}.
- Given $v_{i_1}^n$, the first four moments of X_t at t_n can be evaluated.
- Given $v_{i_1}^n$, m_x discrete values of X_t can be generated by the Johnson curve to match the first four conditional moments of X_{t_n}

Outline

Transition probability matrix $\mathbf{P}^n = [p_{ij}^n]$

• The transition probability p_{ij}^n between $(X_i^n, v_{i_1}^n)$ and $(X_j^{n+1}, v_{j_1}^{n+1})$ is a joint conditional probability

$$p_{ij}^{n} = \mathbb{P}\left(A_{j}^{n+1} \leq X_{t_{n+1}} \leq A_{j+1}^{n+1}, a_{j_{1}}^{n+1} \leq v_{t_{n+1}} \leq a_{j_{1}+1}^{n+1} \mid \left(X_{i}^{n}, v_{i_{1}}^{n}\right)\right),$$

where $A_{j}^{n+1} = (X_{j-1}^{n+1} + X_{j}^{n+1})/2, a_{j_{1}}^{n+1} = (v_{j_{1}-1}^{n+1} + v_{j_{1}}^{n+1})/2, a_{j_{1}+1}^{n+1} = A_{1}^{n+1} = -\infty$, and $a_{m_{i}+1}^{n+1} = A_{m_{i}m_{i}+1}^{n+1} = +\infty$.

- Define a bivariate normally distributed random variable (Z, \tilde{Z}) , where $Z \sim N(0, 1)$, $\tilde{Z} \sim N(0, 1)$ and the correlation ρ .
- Define $\Delta X^{n+1} = X_{t_{n+1}} X_i^n$ and $\Delta v^{n+1} = v_{t_{n+1}} v_{i_1}^n$, we have

$$\Delta X^{n+1} = \left(r - \frac{1}{2}L^2(t_n, X_i^n) v_{i_1}^n\right) \Delta t + L(t_n, X_i^n) \sqrt{v_{i_1}^n} \sqrt{\Delta t} Z$$

and

$$\Delta v^{n+1} = \kappa \left(\theta - v_{i_1}^n \right) \Delta t + \sigma_v \sqrt{v_{i_1}^n} \sqrt{\Delta t} \tilde{Z}.$$

The transition probability p_{ij}^n can be estimated as

$$p_{ij}^{n} = \mathbb{P}\left(C_{j}^{n+1} \le Z \le C_{j+1}^{n+1}, c_{j_{1}}^{n+1} \le \tilde{Z} \le c_{j_{1}+1}^{n+1}\right),$$
(3.3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where
$$C_{j}^{n+1} \equiv \frac{\left(A_{j}^{n+1} - X_{i}^{n} - \left(r - \frac{1}{2}L^{2}(t_{n}, X_{i}^{n})v_{i_{1}}^{n}\right)\Delta t\right)}{L(t_{n}, X_{i}^{n})\sqrt{v_{i_{1}}^{n}}\sqrt{\Delta t}}$$
, and
 $c_{j_{1}}^{n+1} \equiv \frac{\left(a_{j_{1}}^{n+1} - v_{i_{1}}^{n} - \kappa(\theta - v_{i_{1}}^{n})\Delta t\right)}{\sigma_{v}\sqrt{v_{i_{1}}^{n}}\sqrt{\Delta t}}.$

Remark: The transition probability is evaluated by the joint cumulative distribution of (Z, \tilde{Z}) .

Evaluate Leverage function L(t, K)

. Given the willow tree until t_n , we evaluate $\mathbb{E}[v_{t_n}|S_{t_n} = S_i^n]$ for p_{ij}^n from $(S_i^n, v_{i_1}^n)$ to $(S_j^{n+1}, v_{j_1}^{n+1})$. Define $\mathbf{q}^n = (\mathbf{q}^0)^T \cdot \mathbf{P}^1 \cdot \mathbf{P}^2 \cdots \mathbf{P}^{n-1}$ and divide the range S_{t_n} into l mutually exclusive bins $(b_1^n, b_2^n], (b_2^n, b_3^n], \cdots, (b_l^n, b_{l+1}^n]$ with $b_1^n \ge 0$ and $b_{l+1}^n \le \infty$, we have

$$\mathbb{E}\left[\mathbf{v}_{t_n} \mid S_{t_n} = S_i^n\right] \approx \mathbb{E}\left[\mathbf{v}_{t_n} \mid S_{t_n} \in (b_i^n, b_{i+1}^n]\right] \approx \frac{\mathbb{E}\left[\mathbf{v}_{t_n} \mathbf{1}_{\{S_{t_n} \in (b_i^n, b_{i+1}^n]\}}\right]}{\mathbb{P}\left[S_{t_n} \in (b_i^n, b_{i+1}^n]\right]},$$
(3.4)

Given the willow tree till t_n , (3.4) can be evaluated as

$$\mathbb{E}\left[\mathbf{v}_{t_n} \mid S_{t_n} = S_i^n\right] \approx \frac{\mathbb{E}\left[\mathbf{v}_{t_n} \mathbf{1}_{S_{t_n} \in (b_i^n, b_{i+1}^n]}\right]}{\mathbb{P}\left[S_{t_n} \in (b_i^n, b_{i+1}^n]\right]} \approx \frac{\sum_{j=1}^{m_x \times m_v} \tilde{q}_j^n \tilde{v}_j^n \mathbf{1}_{\tilde{S}_j^n \in (b_i^n, b_{i+1}^n]}}{\sum_{j=1}^{m_x \times m_v} \tilde{q}_j^n \mathbf{1}_{\tilde{S}_j \in (b_i^n, b_{i+1}^n]}},$$

where $[\tilde{q}_j^n]$ is the sorted vector of \mathbf{q}^n according to \tilde{S}_j^n .

Option pricing on willow tree

• European call option

•
$$V_i^N = \max\{S_i^N - K, 0\}$$
, for $i = 1, 2, \cdots, m$,
 $n = 1, 2, \cdots, N - 1$
• $V_i^n = e^{-r\Delta t} \sum_{j=1}^m p_{ij}^n V_j^{n+1}$

•
$$V(S_0,0) = e^{-r\Delta t} \sum_{i=1}^m q_i^1 V_i^1$$

• American put option

•
$$V_i^N = \max\{K - S_i^N, 0\}$$
, for $i = 1, 2, \cdots, m$,
 $n = 1, 2, \cdots, N - 1$
• $V_i^n = \max\left\{K - S_i^n, e^{-r\Delta t} \sum_{j=1}^m p_{ij}^n V_j^{n+1}\right\}$
• $V(S_0, 0) = \max\left\{K - S_0, e^{-r\Delta t} \sum_{i=1}^m q_i^1 V_i^1\right\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- VIX (CBOE 30-day volatility index, "fear index") option is very popular, average daily trading volume 600,000+ in Jan. 2021.
- Definition of VIX

$$\mathsf{VIX}_{\mathcal{T}}^{2}(\tau) = \frac{2}{\tau} \mathbb{E}_{\mathcal{T}}^{Q} \left[\int_{\mathcal{T}}^{\mathcal{T}+\tau} \frac{\mathrm{d}S_{u}}{S_{u}} - \mathrm{d}\left(\log S_{u}\right) \right] \times 100^{2}.$$
(3.5)

• Given S_t following the Heston-Dupire model, the VIX on willow tree can be defined as

$$\operatorname{VIX}_{i}^{N} = \sqrt{\frac{\Delta \tau \times 100^{2}}{\tau}} \sum_{n=N}^{N'-1} \mathbb{E}^{Q} \left[L^{2} \left(t_{n}, S_{t_{n}} \right) v_{t_{n}} \mid \left(S_{i}^{N}, v_{i_{1}}^{N} \right) \right],$$
(3.6)

Convergence Analysis

. Define the European call option $U(t, S_t, v_t)$, it satisfies following partial differentiable equation (PDE)

$$\frac{\partial U}{\partial t} + rS\frac{\partial U}{\partial S} + \frac{1}{2}vS^{2}L^{2}(t,S)\frac{\partial^{2}U}{\partial S^{2}} + \frac{1}{2}v\sigma_{v}^{2}\frac{\partial^{2}U}{\partial v^{2}} + [\kappa(\theta - v)]\frac{\partial U}{\partial v} + \rho\sigma_{v}vSL(t,S)\frac{\partial^{2}U}{\partial S\partial v} = rU.$$

$$(4.7)$$

Theorem

Given (S_t, v_t) following the Heston-Dupire model, the computed European option price by the backward induction on the 2-D willow tree converges to the solution of (4.7) as $\Delta t \rightarrow 0$ where $\Delta t = T/N$.

- Heston-Duprie model parameters : risk-free interest rate r = 5%; the mean reversion speed $\kappa = 2.8$; the mean reversion level $\theta = 0.12$; the volatility of volatility $\sigma_v = 0.05$.
- SVI surface from implied volatilities of S&P 500 index options on Feb 21, 2018.

(日)、

・ロト・日本・モト・モート ヨー うへで

Pricing results

Introduction

K	2600	2650	2700	2750	2800	2850	CPU time
upper 95% C.I.	231.8469	193.8914	158.4179	125.9669	97.1430	72.4637	
MC	230.6486	192.7691	157.3784	125.0163	96.2859	71.7023	204.20 seconds
lower 95% C.I.	229.4503	191.6468	156.3389	124.0657	95.4289	70.9408	
WT	231.6441	193.3343	157.6440	125.0565	96.0898	71.2122	9.99 seconds
K	2600	2650	2700	2750	2800	2850	CPU time
upper 95% C.I.	229.8407	192.0267	156.6845	124.4984	96.1622	71.6535	
MC	228.2795	190.5754	155.3539	123.2926	95.0768	70.7064	2.31 hours
lower 95% C.I.	226.7183	189.1241	154.0233	122.0867	93.9913	69.7592	
WT	229.3915	191.1906	155.5285	123.0019	94.1704	69.5864	10.1876 seconds
K	8	10	12	14	16	18	CPU time
upper 95% C.I.	8.8288	6.9071	5.6283	4.7453	4.0812	3.5615	
MC	8.4681	6.5469	5.2765	4.4050	3.7531	3.2453	2.08 hours
lower 95% C.I.	8.1075	6.1866	4.9248	4.0647	3.4249	2.9292	
WT	8.5321	6.6136	5.2855	4.3806	3.6970	3.1590	15.75 second

- 50,000 simulation pathes for European and American options.

- 5,000 simulated paths for outer loop and 5,000 simulated paths for inner loop for VIX option.

Convergence on *N*

- Propose a novel willow tree method for non-parametric Heston-Duprie model.
- Replace the correlation decoupling with a joint probability distribution.
- Estimate the conditional expectation in the leverage function without simulations
- Provide the convergence rate of the willow tree method under the Heston-Duprie model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline Introduction Willow tree method Convergence Analysis Numerical Experiments Conclusion

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Curran, M. (2001).

Introduction

Willow power: optimizing derivative pricing trees. *ALGO RESEARCH QUARTERLY*, 4(4):15–24.

Johnson, N. L. (1949).

The α -hypergeometric stochastic volatility model. Systems of frequency curves generated by methods of translation, 36:149–176.

📄 Wang, G. and Xu, W. (2018).

A unified willow tree framework for one-factor short-rate models.

The Journal of Derivatives, 25(3):33-54.

Xu, W., Hong, Z., and Qin, C. (2013).
 A new sampling strategy willow tree method with application to path-dependent option pricing.
 Quantitative Finance, 13(6):861–872.