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Introduction

Option and its models

e Call/Put option: holder has the right to buy/sell an
underlying asset (S;) at a predetermined price (Strick price K)
in future (Maturity T) from the writer.

e European/American Option
e Black-Sholes Model (1979)

dSt = rStdt + O'StdW,

where r is the risk-free interest rate, o is the volatility of S
and dW is a Brownian motion

¢ Heston stochastic volatility (SV) model (1991)
e Stochastic local volatility (SLV) model (1999)



Introduction

Non-parametric Heston-Duprie SLV model

. The underlying asset S; satisfying following stochastic differential
equation(SDE):
dS; = rSedt + L(t,St) /veSedWE, (2.1)
dvi = k(0 — vt) dt+0v\/7tdWE. '

where v; is the variance of S;, r is the risk-free interest rate; x is
the mean-reversion speed of the variance; 6 is the long-term mean
variance and o, is the volatility of variance. The correlation
between two driven Brownian motions is p.

Remark: It collapses to many popular SV or SLV models when the
leverage function L(t,S;) defined in some special forms.
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Leverage function L(t, S;)

. Without assuming any particular from, the leverage function satisfies

aC(t,K ac t,K
L2(t, K) — ((9t ) rK ( ) . UEV(tv K) ,
1Kzag§<t2K]E[vt|St K] CE[w ]S =K]

where C(t, K) is the European call option matured at t with strike price
K, and o1v(t, K) is called Duprie's local volatility, which is in the form of

o2 (t, K) + 2toy(t, K) (%2 + rk 95t)

02 (t, K): ’
v (1+ dikVES)" + K2, K0t (52 — /e (52)7)

|n(i}?)+(r+%a,2(t,K))t
ai(t,K)Vt

where o(t, K) is the implied volatility and d; =



Introduction

Stochastic volatility inspired (SVI) model

. Given a maturity T,, the SVI model of implied volatility o/(t, K) is

an + ﬁn |:pn (X - mn) + (X - mn)2 + Cn:|

SVI
t
( X) :

)

where ap,m, € R,B, > 0,|pn]l < 1,(n >0, and x =1In (Sﬁ)
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SVI curves of SPX on Feb 21, 2018.
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Willow tree method

Willow Tree Method

e Proposed by [Curran, 2001], but improved by [Xu et al., 2013].

e Applicable to various continuous models, such as diffusion models
and Levy models, and discrete models, such as GARCH models, in
option pricing and risk management.
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Willow tree method

Willow Tree Construction

Two main steps: tree node pairs (S, v/}), and transition probability
[pu]' ’7J_1a2a 5 - My, n—]. 2. 7N_

o Let X; =InS;, we have

dX; = (r - %LZ (t, eXf) vt) dt —|—2L (t, eXf) \/thth (3.2)
dve = k(0 — v¢) dt + oy /vedWE.
e Given v;, the first four moments of X; can be evaluated
K
2007 ] = (2[00 gy + R =124
=0

where the operator £ and residual are in the form of

1 0 0
L= (r—2L2 (t,eX‘) Vt> 87)<t+ L2 (t eXt) Vtaxt?a

and
K+

Rk41 = (IC+1 E{ﬁk[xs)]}, 0<{c<t



Willow tree method

Tree nodes construction (X, v/)

I i

e Given v; following a CIR model, the first four moments of v;
can be evaluated analytically[Wang and Xu, 2018].

e At t,, m, discrete values of v; can be generated by the
Johnson curve [Johnson, 1949] to match the first four
moments of v, .

e Given v,-’17, the first four moments of X; at t, can be evaluated.
e Given v/, my discrete values of X; can be generated by the

Johnson curve to match the first four conditional moments of
Xt

n



Willow tree method

Transition probability matrix P" = [p,j’]

e The transition probability pf} between (X7, v/") and (X!, v/*) is
a joint conditional probability

n __ n+1 n+1 n+1 n+1
pij - IP (Aj S th+1 < AJ+17 1 S th+1 < aﬂ+1 | ( i 11))

where An+1 (Xn+11 +Xn+1)/2 n+1 (J111+11 4 n+1)/2’

n+1l _ aAn+l n+1 n+1
a7 A = —o0, and aj, l_Amm+1_+Oo'

e Define a bivariate normally distributed random variable (Z,Z),
where Z ~ N(0,1), Z ~ N(0,1) and the correlation p.

o Define AX"t =X, ., — X" and Av™™ = v, ., — v, we have

I1’
1
AX”+1:<r—2L2(t,,,X,) )At+Ltn, )\/viVALZ

and

AV”+1 =K (9 - Vi’;) At+ UV\/TZ\/EZ



Willow tree method

The transition probability p,-’J’- can be estimated as

1 1 _ntl 3 1
=F(G <z qt<z<qii), (33
AP X —(r—112( 8, X )V ) At
where C."Jr1 = (4 (r=3t2(nx7) %) ) and

L(tn,X!)\ /v VAL
CP+1 _ <a1"1+1—v —r(0— v")At)
J1 oy ﬁr :
Remark: The transition probability is evaluated by the joint
cumulative distribution of (Z,Z).




Willow tree method

Evaluate Leverage function L(t, K)

- Given the willow tree until t,, we evaluate E[v¢,[S;, = 5] for pj;
+1 n+l -

from (57, v7) to (5", v/ ""). Define

q" =(q°)7 - PL. P2 -P"1 and divide the range S, into /

mutually exclusive bins (b7, b3], (b5, b3],- -, (b], b}, ;] with

b? > 0 and b,”+1 < 00, we have

E |:Vt,,1{5t,,€(b" ,+1]}]

P[St, € (b],bf4]]
(3.4)

Elvt, | S, = S~ E [th | St, € (b7, b?+1]] ~

Given the willow tree till t,, (3.4) can be evaluated as

MmxXmy ~n-~, n
[thlst,,e(b" b } Do gl v g, Sre(br,br

i+1 i+1

[Stn (b7, b,n+1 } ijlexmv 5/1 15 i€ (br,b! 7

i+1

E[v, | St, = S7] =

where [G] is the sorted vector of q" according to .§J-”.



Willow tree method

Option pricing on willow tree

e European call option
o VN =max{SN — K,0}, for i =1,2,---.m,
n=12--,N—1

m
n __ ,—rAt ny/n+1
o Vli=e > pU\/J
=1

1

o V(Sp,0)=e At gtV
i=1

e American put option
o VN =max{K — SN, 0}, fori=1,2,---.m,
n=12--,N—1

m
° Vin = max {K _ Sinv e rAt Z PZ- an+1}
Jj=1

1

i=1

e V(Sy,0) = max {K — So,e ™Ay gt V-l}



Willow tree method

VIX option pricing

e VIX (CBOE 30-day volatility index, "fear index") option is
very popular, average daily trading volume 600,000+ in Jan.
2021.

e Definition of VIX

T+t
VIX3(7) = %E? [/ dSS” — d (log Su)] x 100%. (3.5)
T u

e Given S; following the Heston-Dupire model, the VIX on
willow tree can be defined as

o N'—1

VIXN = J AT x 100 Z EQ |L [ (tns St,) v, | (5,"’, ’)’ﬂ
(3.6)



Convergence Analysis

Convergence Analysis

. Define the European call option U(t, St, vt), it satisfies following
partial differentiable equation (PDE)

U U 1 ., PU 1 LU
87—’— Sgﬁ— SL(t,S)@—F* W
20U (4.7)

+[K(6 — V)]E + po,vSL(t,S) 550y rU.

Given (S¢, v¢) following the Heston-Dupire model, the computed
European option price by the backward induction on the 2-D
willow tree converges to the solution of (4.7) as At — 0 where

At =T/N.




Numerical Experiments

Parameter setting

e Heston-Duprie model parameters : risk-free interest rate
r = 5%; the mean reversion speed xk = 2.8; the mean
reversion level § = 0.12; the volatility of volatility o, = 0.05.
e SVI surface from implied volatilities of S&P 500 index options
on Feb 21, 2018.
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Pricing results

Numerical Experiments

European call option

K 2600 2650 2700 2750 2800 2850 CPU time
upper 95% C.I. 231.8469 193.8914 158.4179 125.9669 97.1430 72.4637
MC 230.6486 192.7691 157.3784 125.0163 96.2859 71.7023 204.20 seconds
lower 95% C.I. 229.4503 191.6468 156.3389 124.0657 95.4289 70.9408
WT 231.6441 193.3343 157.6440 125.0565 96.0898 71.2122 9.99 seconds
American put options
K 2600 2650 2700 2750 2800 2850 CPU time
upper 95% C.I. 229.8407 192.0267 156.6845 124.4984 96.1622 71.6535
MC 228.2795 190.5754 155.3539 123.2926 95.0768 70.7064 2.31 hours
lower 95% C.I. 226.7183 189.1241 154.0233 122.0867 93.9913 69.7592
WT 229.3915 191.1906 155.5285 123.0019 94.1704 69.5864 10.1876 seconds
VIX call options
K 8 10 12 14 16 18 CPU time
upper 95% C.I. 8.8288 6.9071 5.6283 4.7453 4.0812 3.5615
MC 8.4681 6.5469 5.2765 4.4050 3.7531 3.2453 2.08 hours
lower 95% C.I. 8.1075 6.1866 4.9248 4.0647 3.4249 2.9292
WT 8.5321 6.6136 5.2855 4.3806 3.6970 3.1590 15.75 second

- 50,000 simulation pathes for European and American options.

- 5,000 simulated paths for outer loop and 5,000 simulated paths for inner loop for VIX option.



Numerical Experiments

Convergence on N

(e) European call (f) American put
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Conclusion

Conclusion

e Propose a novel willow tree method for non-parametric
Heston-Duprie model.

e Replace the correlation decoupling with a joint probability
distribution.

e Estimate the conditional expectation in the leverage function
without simulations

e Provide the convergence rate of the willow tree method under
the Heston-Duprie model.



Thank youl!
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