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Multilevel Monte Carlo
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Multilevel Monte Carlo
▶ Scenario: we want to estimate a quantity P = E[P ].
▶ We cannot sample P directly. But we do have access to a

sequence of approximate estimators P l
l for l = 0, 1, 2, . . . .

▶ P l = E[P l
l ] → P as l → ∞, but the samples become

increasing costly to generate.
▶ Typically,

∣∣P l − P
∣∣ is inversely proportional to the cost,

while the sampling error is inversely proportional to the
square of the number of samples, so that the cost of
generating an overall error of ϵ is proportional to 1/ϵ3.

MLMC (Giles, 2008) exploits multiple levels of estimates to
reduce the cost to - under certain conditions - as low as 1/ϵ2.
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Multilevel Monte Carlo
▶ Suppose that, whenever we generate a sample of P l

l , we
are able to generate a correlated sample of P l

l−1, with mean
P l−1.

▶ We collect these together as basic estimators:
Y0 = P 0

0 , and Yl = P l
l − P l

l−1 for l = 1, 2, . . .

▶ A MLMC estimator at level L takes the form PL =
L∑
l=0

αL
l
Yl .

▶ The numbers of samples αL
l are chosen to minimise the

cost per unit variance W 2
L:

αL
l =

∆l

ηl
WL, with WL =

L∑
l=0

∆lηl,

where ∆2
l is the variance of Yl and η2l is the cost of

computing Yl.
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Multilevel Monte Carlo
Two ideas

First idea
The ratio of successive numbers of samples is independent of
L, so we can write the MLMC estimator recursively:

P0 = ∆2
0
Y0, and, for l > 0, Pl =

l∑
l′=0

αl
l′
Yl′ = αl

Yl + βl
Pl−1,

where αl = αl
l =

∆lWl

ηl
and βl =

Wl

Wl−1
.

Expanding Pl = αl
P l
l −

(
αl
P l
l−1 − βl

Pl−1

)
, and noticing that

E[αl
P l
l−1 − βl

Pl−1] = 0, leads to …
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Multilevel Monte Carlo
Two ideas

Second idea
…adding weights (in the spirit of control variates (Kebaier
2005)):

Pl = αl
P l
l − θl−1

(
αl
P l
l−1 − βl

Pl−1

)
= αl

Y
θl−1

l + θl−1 βl
Pl−1

where Y θ
l = P l

l − θP l
l−1.

This results in the weighted MLMC estimate:

PL =
L∑
l=0

ΘL
l

(
αlβL
βl

)Y θl
l ,

where ΘL
l =

∏L−1
l′=l θl′ .
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Weighted Multilevel Monte Carlo
▶ We optimise both the numbers of samples and the weights.

It is most natural to do this recursively, minimising the cost
of Pl subject to unit variance.

▶ We start with P0 = α0Y0 = α0P
0
0 .

In this case, α0 = ∆2
0, and W0 = ∆0η0, so that V[P0] = 1.

▶ (Note that we can set the variances to some value v2 by
multiplying all the values of α by v2.)

▶ Suppose we have an optimised WMLMC estimator Pl−1.
For fixed θl−1, we can minimise the cost by setting

αl =
∆

θl−1
l Wl

ηl
, βl = |θl−1| Wl

Wl−1
,

Wl = ∆
θl−1

l ηl + |θl−1|Wl−1.
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Weighted Multilevel Monte Carlo
▶ If ρl = Corr[P l

l , P
l
l−1] ≤

Wl−1

ηlσl−1
, we take θl−1 = 0, and l

becomes our new coarsest level.
▶ Otherwise, the optimal θl−1 is positive, and we have

θl−1 =
ρlσl

σl−1

− ∆
θl−1

l Wl−1

ηlσ2
l

, with ∆
θl−1

l =

√√√√σ2
l (1− ρ2l )

1− W 2
l−1

η2l σ
2
l

▶ This results in

Wl

σl

= ρl
Wl−1

σl−1

+

√
(1− ρ2l )

(
η2l −

W 2
l−1

σ2
l−1

)
which allows us to determine the optimal weights θl and
the efforts αl and βl.
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Weighted Multilevel Monte Carlo
Comparison with MLMC

▶ In order to gain insight into the comparative the costs
associated with MLMC and WMLMC it is convenient to
assume that σl ≡ σ and that η2l = Mη2l−1, and to focus on
the two-level case. We have that W0 = ση0 = Ŵ0 (where Ŵl

is the cost of a single-level estimator at level l).
▶ We have, for the optimal weighted version

W1 =

{
Ŵ0

(
ρ1 +

√
(1− ρ21)(M − 1)

)
if ρ1 > 1√

M

Ŵ1 (= ση1) otherwise.
▶ And for MLMLC (which corresponds to taking θ0 = 1)

W1 =

Ŵ0

(
1 +

√
2M(1− ρ1)

)
if ρ1 > 1− 1

2

(
1− 1√

M

)2

Ŵ1 otherwise.



Tony Ware, April 2024 WMLMC Multilevel Monte Carlo 10

Weighted Multilevel Monte Carlo
Two-level normalised cost (i.e. W 2

1 /Ŵ
2
1 )
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Weighted Multilevel Monte Carlo
Two-level cost ratio (unweighted/weighted)
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Weighted Multilevel Monte Carlo
Three-level cost ratio (unweighted/weighted)
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Weighted Multilevel Monte Carlo
Numerical Comparisons
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Weighted Multilevel Monte Carlo
Numerical Comparisons
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Weighted Multilevel Monte Carlo
Numerical Comparisons
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Weighted Multilevel Monte Carlo
Numerical Comparisons
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Weighted Multi-Index MLMC
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Weighted Multi-Index Multilevel Monte Carlo
▶ Our estimates are now

indexed by multi-indices
λ ∈ N2.

▶ The MIMLMC method uses
alternating signs to define
Yλ.

▶ It can (again) be written in
a recursive form, and
weights can be added.

▶ There is no longer an
explicit expression for the
optimal weights, but they
can be determined
numerically at each node.

Pλ = αλ
Y tλ
λ +

∑
µ∈□−

λ

θλµ
(

βλ
βµ

)Pµ

=
∑
µ≤λ

Θλ
µ

(
αµβλ
βµ

)Yµ.
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Weighted Multi-Index Multilevel Monte Carlo
Some more details

We write

Pλ = αλ
Y tλ
λ +

∑
µ∈□−

λ

θλµ
(

βλ
βµ

)Pµ

=
∑
µ≤λ

Θλ
µ

(
αµβλ
βµ

)Yµ.

▶ The index set □−
λ = {µ ≥ (0, 0)|maxi λi − µi = 1}.

▶ Θλ
µ is the sum over all paths from µ to λ of the product of

the values of θλ′

µ′ along each path.
▶ The effort αµβλ

βµ
is independent of the path from µ to λ by

virtue of the recursive construction.
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Weighted Multi-Index Multilevel Monte Carlo
Some more details

▶ Given the recursive relation

Pλ = αλ
Y tλ
λ +

∑
µ∈□−

λ

θλµ
(

βλ
βµ

)Pµ,

we can, given tλ = [θλµ]µ∈□−
λ
, determine αλ and βλ so as to

minimise the effort needed to ensure V[Pλ] = 1.
▶ It remains to optimise over tλ, and this involves minimising

the sum of the square roots of two quadratic forms defined
by tλ. This minimisation is performed numerically at each
node.

▶ The unweighted MIMLMC method consists in setting
θλµ = (−1)1+|λ−µ|.
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Weighted Multi-Index Multilevel Monte Carlo
Numerical comparisons: Zakai SPDE
We consider the Zakai SPDE (Reisinger/Wang 2018):

dv = −µ
∂v

∂x
dt+

1

2

∂2v

∂x2
dt−√

ρ
∂v

∂x
dMt.

The quantity of interest is Lt = 1−
∫∞
0

v(t, x)dx. We compute
with a timestep k = 4−m+1 and a grid spacing in x of h = 2−n,
and compare the effort required to achieve a fixed variance
using the unweighted and weighted MIMLMC:

n\m 0 1 2 3
0 1.0 1.0 1.0 1.0
1 1.6 1.5 1.5 1.7
2 1.8 1.9 1.8 2.0
3 2.0 1.9 1.9 1.9
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Weighted Multi-Index Multilevel Monte Carlo
Numerical comparisons: a hybrid COS-Monte-Carlo basket option valuation

▶ Here we express a (d+ 2)-asset basket option payoff as a
function Λ(Z1, Z2) of independent normal random variables
Z1 ∈ R2 and Z2 ∈ Rd. The option value can be written as a
nested expectation:

E[Λ2(Z2)], with Λ2(z2) = E[Λ(Z1, z2)].

▶ For each sample of Z2, the inner expectation is computed
using a two-dimensional COS method, with (21+Li − 1)
modes used in dimension i (for i = 1, 2).

▶ We again compare MIMC with WMIMC. For some
combinations of L1 and L2, MIMC provides no advantage
over a single-level estimate.
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Weighted Multi-Index Multilevel Monte Carlo
Numerical comparisons: a hybrid COS-Monte-Carlo basket option valuation
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Weighted Multi-Index Multilevel Monte Carlo
Numerical comparisons: a hybrid COS-Monte-Carlo basket option valuation

The ratio between the unweighted and weighted MIMLMC costs
to achieve a given variance

L1\L2 0 1 2 3 4 5 6
0
1 1.49 1.59 1.57 1.56 1.75 1.71 1.70
2 1.46 1.61 1.86 2.85 3.51 3.17 4.26
3 1.59 1.81 1.93 6.18 6.57 11.78 14.58
4 1.58 2.17 4.25 11.93 10.44 15.22 18.47
5 1.61 2.36 5.81 12.39 18.51 24.46 27.37
6 1.64 2.35 5.82 13.25 21.41 28.56 31.48
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Conclusions
▶ MLMC and MIMLMC can be formulated recursively, and in

that way are naturally viewed as nested control variate
variance reduction techniques.

▶ As such, weights can be added, and the optimal weights
computed at each node.

▶ The addition of weights does not change the asymptotic
rate of convergence, but it does allow for more efficient use
of estimates at coarser resolutions (and lower correlations)
than with unweighted MLMC, resulting in potentially
significant gains in performance.

▶ The gains are relatively insensitive to the optimal choice of
weights.

▶ The multi-index version offers potentially even greater
relative improvement.
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