Conclusion 000

Computational Recovery of the Time-Dependent Volatility of Volatility in a Heston Model

Slavi G. Georgiev^{1,2} Lubin G. Vulkov²

¹Department of Informational Modeling, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences sggeorgiev@math.bas.bg

²Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse sggeorgiev@uni-ruse.bg, lvalkov@uni-ruse.bg

International Conference on Computational Finance, 2-5 April 2024, Amsterdam

Contents

Introduction and Formulation of the Problems

- Stochastic volatility models
- Definitions
- Inverse Problem Formulation
- 2 Solution to the Direct Problem
 - Finite Difference Scheme
 - Well-posed Boundary Conditions
- **3** Solution to the Inverse Problem
 - Observations Definition
 - Algorithm
- 4 Experiments
 - Direct Problem
 - Implied Volatility of Volatility

Introduction $\bullet 0000$	Solution to the Direct Problem	Solution to the Inverse Problem	Experiments 0000	Conclusion 000	
Stochastic volatility models					
Heston model					

The two-factor model introduces two sources of uncertainty by incorporating a stochastic variance:

$$dx_t = \left(r_d - r_f - \frac{v_t}{2}\right) x_t dt + \sqrt{v_t} dW_t^1,$$

$$dv_t = k(t) \left(\theta(t) - v_t\right) dt + \xi(t) \sqrt{v_t} dW_t^2.$$

where x_t is the log-spot price $x_t = \log S_t$, v_t is the instantaneous variance, k(t) is the speed of mean reversion, $\theta(t)$ is the long-term mean of the variance, and $\xi(t)$ is the volatility of the variance.

The Wiener processes W_t^i are correlated with instantaneous correlation $\rho(t)$, i. e.

$$\mathbb{E}[\mathrm{d}W_t^1 \mathrm{d}W_t^2] = \rho(t)\mathrm{d}t.$$

Introduction $0 \bullet 000$	Solution to the Direct Problem	Solution to the Inverse Problem	Experiments 0000	$\begin{array}{c} {\rm Conclusion} \\ {\rm 000} \end{array}$	
Stochastic vol	atility models				
Related Sources					

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem 00000000	Experiments 0000	$\begin{array}{c} {\rm Conclusion} \\ {\rm 000} \end{array}$	
Stochastic volatility models					
Related Sources					

- P. Carr, A. Itkin, D. Muravey, Semi-analytical pricing of barrier options in the time-dependent Heston model, arXiv:2202.06177 [q-fin.PR], (2022).
- A. Clevenhaus, C. Totzeck, M. Ehrhardt, A gradient based calibration method for the Heston model, Int. J. Comp. Math., (2024).
- S. Georgiev, L. Vulkov, Computational recovery of time-dependent volatility from integral observations in option pricing, J. Comput. Sci., 39, 101054, (2019).
- D. Guterding, W. Boenkost, The Heston stochastic volatility model with piecewise constant parameters efficient calibration and pricing of window barrier options, J. Comput. Appl. Math., 343, 353-362, (2018).
- Y. Jin, J. Wang, S. Kim, Y. Heo, C. Yoo, Y. Kim, J. Kim, D. Jeong, Reconstruction of the time-dependent volatility function using the Black–Scholes model, Discr. Dyn. Nat. Soc., vol. 2018, ID 3093708, (2018).

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem	Experiments 0000	Conclusion 000
Definitions				
Heston Model				

We consider the two-dimensional general Heston equation for pricing European call option

$$\frac{\partial C}{\partial \tau} - \frac{v}{2} \frac{\partial^2 C}{\partial x^2} - \frac{\xi^2(\tau)}{2} v \frac{\partial^2 C}{\partial v^2} - \xi(\tau) \rho(\tau) v \frac{\partial^2 C}{\partial x \partial v} - \left(r_d - r_f - \frac{v}{2} \right) \frac{\partial C}{\partial x} - k(\tau) \left(\theta(\tau) - v \right) \frac{\partial C}{\partial v} + r_d C = 0 \quad (1)$$

with $\tau = T - t$ and the initial condition

$$C(x, v, 0) = \max(\exp(x) - K, 0).$$

Introduction $\circ \circ \circ \circ \circ \circ$	Solution to the Direct Problem	Solution to the Inverse Problem	$\stackrel{\mathrm{Experiments}}{_{0000}}$	$\begin{array}{c} {\rm Conclusion} \\ {\rm 000} \end{array}$	
Definitions					
Heston BC					

In the solution to the direct and inverse problems, we use the Heston boundary conditions:

$$\begin{split} C(-\infty, v, \tau) &= 0, \\ C(\infty, v, 0) &= \exp(x) - K \exp(-r_d \tau), \\ \frac{\partial C}{\partial \tau}(x, 0, \tau) - (r_d - r_f) \frac{\partial C}{\partial x}(x, 0, \tau) \\ &- k(\tau) \theta(\tau) \frac{\partial C}{\partial v}(x, 0, \tau) + r_d C(x, 0, \tau) = 0, \\ C(x, \infty, 0) &= \exp(x) - K \exp(-r_d \tau). \end{split}$$

The question about well-posed boundary conditions would be regarded henceforward.

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion 00000

Inverse Problem Formulation

Implied Volatility of Volatility

Assume we know the option price C. Then we find that volatility $\xi(\tau)$, for which the theoretical result coincides with the observed quoted price on the market. This volatility is called *implied volatility*, i. e.

$$C^{\text{obs}} = C(x, t; K, T, r_d, r_f, \theta(\tau), k(\tau), \rho(\tau), \xi^{\text{imp}}(\tau)).$$

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion 00000 Solution to the Direct Problem Solution to the Inverse Problem Solution Solut

Discretization of (1)

Let $f: [x_{\min}, x_{\max}] \to \mathbb{R}$ and if $x_{\min} = x_0 < x_1 < \ldots < x_{I+1} = x_{\max}$ is the spatial grid, $h_i = x_i - x_{i-1}, H_i = h_i + h_{i+1}, (1 \le i \le I)$, then the first derivative $f'(x_i)$ could be approximated in the following ways:

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{h_i} \equiv \mathbf{D}^l f_i, \qquad (2)$$

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{h_{i+1}} \equiv D^r f_i$$
 (3)

as well as the second derivative $f''(r_i)$:

$$f''(x_i) \approx \frac{2}{h_i H_i} f(x_{i-1}) - \frac{2}{h_i h_{i+1}} f(x_i) + \frac{2}{h_{i+1} H_i} f(x_{i+1}) \equiv D^2 f_i.$$
(4)
(4)

Applying (2), (3) and (4) to (1), we have an upwind implicit scheme.

Well-posed Boundary Conditions

Rewriting (1) in terms of the gradient operator gives

$$\frac{\partial C}{\partial \tau} = \nabla \cdot (A \nabla C) + B^{\top} \cdot \nabla C - r_d C, \qquad (5)$$

where

$$A = \frac{v}{2} \begin{bmatrix} 1 & \rho\xi \\ \rho\xi & \xi^2 \end{bmatrix}, \quad B = \begin{bmatrix} -\frac{v+\rho\xi}{2} + (r_d - r_f) \\ -\frac{\xi^2}{2} + k(\theta - v) \end{bmatrix}.$$

After multiplying (5) by a function $\phi \in H^1$, we obtain

$$\int_{\Omega} \frac{\partial C}{\partial \tau} \phi \mathrm{d}\Omega = \int_{\Omega} \nabla \cdot (A \nabla C) \phi \mathrm{d}\Omega - \int_{\Omega} B^{\top} \nabla C \phi \mathrm{d}\Omega - r_d \int_{\Omega} C \phi \mathrm{d}\Omega.$$

After applying the Green first identity to the diffusion term and choosing $\phi = C$, we get

$$\begin{split} \int_{\Omega} \frac{\partial C}{\partial \tau} C \mathrm{d}\Omega &= \int_{\partial \Omega} C(A \nabla C) \cdot \vec{n} \mathrm{d}(\partial \Omega) - \int_{\Omega} \nabla C^{\top} A \nabla C \mathrm{d}\Omega + \\ &\int_{\Omega} C B^{\top} \nabla C \mathrm{d}\Omega - r_d \int_{\Omega} C^2 \mathrm{d}\Omega, \end{split}$$

which, rewritten in terms of L^2 norms and accounting that $A \ge 0$, yields

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}\tau}\|C\|^2 \leqslant \int_{\partial\Omega} C(A\nabla C) \cdot \vec{n} \mathrm{d}(\partial\Omega) + \int_{\Omega} CB^{\top} \nabla C \mathrm{d}\Omega - r_d \|C\|^2.$$
(6)

Well-posed Boundary Conditions

Theorem

If the integrals in (6) vanish or are negative, then the correspondin IBVP for eq. (1) is well-posed and the following estimate holds:

 $||C(T)|| \leq \exp(bT)||C(0)||,$

where $2b = \overline{K} - r_d$, $\overline{K} = \max_{\tau \in [0,T]} k(\tau)$.

Introduction Solution to the Direct Problem

olution to the Inverse Prob

roblem Experiments 0000

nts Conclusion

Well-posed Boundary Conditions

Computational Domain

12/36

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion

Well-posed Boundary Conditions

Restricting x and v to a rectangular domain, truncated at $x_{\min} = -X$, $x_{\max} = X > 0$, $v_{\min} = 0$, $v_{\max} = V > 0$, forms four boundaries.

Diffusion terms

$$\begin{split} \int_{\partial\Omega} C(A\nabla C) \cdot \vec{n} \mathrm{d}(\partial\Omega) &= -\frac{1}{2} \int_{0}^{V} vC \left(\rho(t)\xi(\tau) \frac{\partial C}{\partial v} + \frac{\partial C}{\partial x} \right) \mathrm{d}v \Big|_{x=-X} \\ &+ \frac{1}{2} \int_{0}^{V} vC \left(\rho(\tau)\xi(\tau) \frac{\partial C}{\partial v} + \frac{\partial C}{\partial x} \right) \mathrm{d}v \Big|_{x=X} \\ &+ \frac{1}{2} \int_{-X}^{X} vC \left(\xi^{2}(\tau) \frac{\partial C}{\partial v} + \rho(\tau)\xi(\tau) \frac{\partial C}{\partial x} \right) \mathrm{d}x \Big|_{v=V}. \end{split}$$

Analogously, the terms from the convection integral follows:

Convection terms

$$\begin{split} &\int_{\Omega} CB^{\top} \nabla C \mathrm{d}\Omega = \frac{1}{2} \underbrace{\int_{\Omega} \left(k(\tau) \left(\theta(\tau) - v \right) - \frac{1}{2} \xi^{2}(\tau) \right) \frac{\partial C^{2}}{\partial v} \mathrm{d}\Omega}_{I_{1}} \\ &+ \frac{1}{2} \underbrace{\int_{\Omega} (r_{d} - r_{f}) \frac{\partial C^{2}}{\partial x} \mathrm{d}\Omega}_{I_{2}} - \frac{1}{4} \underbrace{\int_{\Omega} \left(v + \rho(\tau) \xi(\tau) \right) \frac{\partial C^{2}}{\partial x} \mathrm{d}\Omega}_{I_{3}}. \end{split}$$

Now, we will define the respective well-posed boundary conditions on the four boundaries.

After integrating by parts we obtain:

$$\begin{split} I_1 &= \int_{-X}^X \int_0^V \left(k(\tau) \big(\theta(t) - v \big) - \frac{1}{2} \xi^2(\tau) \right) \frac{\partial C^2}{\partial v} \mathrm{d}v \mathrm{d}x \\ &+ \int_{-X}^X \left(k(\tau) \big(\theta(t) - V \big) - \frac{1}{2} \xi^2(\tau) \right) C^2(V, x, \tau) \mathrm{d}x \\ &- \int_{-X}^X \left(k(\tau) \theta(\tau) - \frac{1}{2} \xi^2(\tau) \right) C^2(0, x, \tau) \mathrm{d}x + k(\tau) \iint_{\Omega} C^2 \mathrm{d}\Omega. \end{split}$$

Well-posed Boundary Conditions

Again, integrating by parts yields:

$$I_2 = (r_d - r_f) \int_0^V \left(C^2(v, X, \tau) - C^2(v, -X, \tau) \right) dv$$

and

$$I_{3} = \int_{0}^{V} \left(\left(v + \rho(\tau)\xi(\tau) \right) \int_{-X}^{X} \frac{\partial C^{2}}{\partial x} dx \right) dv = \int_{0}^{V} \left(v + \rho(\tau)\xi(\tau) \right) \left(C^{2}(v, X, \tau) - C^{2}(v, -X, \tau) \right) dv.$$

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion 00000 0000 0000 0000 Well-posed Boundary Conditions Convection terms

$$\int_{\Omega} CB^{\top} \nabla C d\Omega = \frac{1}{2} \int_{-X}^{X} \left(k(\tau) \left(\theta(\tau) - V \right) - \frac{1}{2} \xi^{2}(\tau) \right) C^{2}(x, V, \tau) dx$$

$$-\frac{1}{2}\int_{-X}\left(k(\tau)\theta(\tau) - \frac{1}{2}\xi^2(\tau)\right)C^2(x,0,\tau)\mathrm{d}x + \frac{k(\tau)}{2}\iint_{\Omega}C^2\mathrm{d}\Omega$$

V

0

$$+\frac{1}{2}\int_{0}^{r}\left((r_{d}-r_{f})-\frac{1}{2}(v+\rho(\tau)\xi(\tau))\right)C^{2}(v,X,\tau)\mathrm{d}v\\-\frac{1}{2}\int_{0}^{V}\left((r_{d}-r_{f})-\frac{1}{2}(v+\rho(t)\xi(\tau))\right)C^{2}(v,-X,\tau)\mathrm{d}v.$$

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion

Well-posed Boundary Conditions

Left boundary Γ_l : x = -X

$$-\frac{1}{2}\int_{0}^{V}\left[v\left(\rho(\tau)\xi(\tau)\frac{\partial C}{\partial x}(-X,V,\tau)+\frac{\partial C}{\partial v}(-X,V,\tau)\right)\right.\\\left.+\left((r_{d}-r_{f})-\frac{1}{2}\left(v+\rho(\tau)\xi(\tau)\right)\right)C^{2}(-X,V,\tau)\right]dv.$$

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion 00000 Well-posed Boundary Conditions Down boundary Γ_d : v = 0

$$\frac{1}{2}\int_{-X}^{X} \left(k(\tau)\theta(\tau) - \frac{1}{2}\xi^2(\tau)\right) C^2(x,0,\tau) \mathrm{d}x.$$

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion

Well-posed Boundary Conditions

Right boundary Γ_r : x = X

$$\begin{split} \frac{1}{2} \int\limits_{0}^{V} \left(\rho(\tau)\xi(\tau) \frac{\partial C}{\partial x}(X, v, \tau) + \frac{\partial C}{\partial v}(X, v, \tau) \right) \mathrm{d}v \\ &+ \frac{1}{2} \int\limits_{0}^{V} \left((r_d - r_f) - \frac{1}{2} \left(v + \rho(\tau)\xi(\tau) \right) \right) C^2(X, v, \tau) \mathrm{d}v. \end{split}$$

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion 0000 Well-posed Boundary Conditions Up boundary Γ_u : v = V

$$\begin{split} \frac{v}{2} \int\limits_{-X}^{X} \left(\xi^2(\tau) \frac{\partial C}{\partial x}(x, V, \tau) + \rho(\tau) \xi(\tau) \frac{\partial C}{\partial v}(x, V, \tau) \right) \mathrm{d}x \\ &+ \frac{1}{2} \int\limits_{-X}^{X} \left(k(\tau) \left(\theta(t) - V \right) - \frac{1}{2} \xi^2(\tau) \right) C^2(x, V, \tau) \mathrm{d}x. \end{split}$$

Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion

Observations Definition

Reconstruction Problem

Observations Definition

Reconstruction Problem

We have a set of *market* measurements $\{\omega_{\beta}^{\alpha}\}$, where ω_{β}^{α} is the quoted price of an option with maturity T_{α} , $\alpha = 1, \ldots, M_T$ and strikes K_{β} , $\beta = 1, \ldots, N$, assuming that $T_1 \leq \ldots \leq T_{M_T}$.

0000000

Observations Definition

Reconstruction Problem

We have a set of *market* measurements $\{\omega_{\beta}^{\alpha}\}$, where ω_{β}^{α} is the quoted price of an option with maturity T_{α} , $\alpha = 1, \ldots, M_T$ and strikes $K_{\beta}, \beta = 1, \ldots, N$, assuming that $T_1 \leq \ldots \leq T_{M_T}$.

We minimize the following

Cost Function

$$\Gamma_{\alpha}(\xi) = \frac{1}{N} \sum_{\beta=1}^{N} \left[c_{\beta}(\xi_{\alpha}(\tau_{\alpha}); K_{\beta}, T_{\alpha}) - \omega_{\beta}^{\alpha} \right]^{2} \chi_{\beta}^{\alpha},$$
$$\tau_{\alpha} \in (0, T_{\alpha}], \quad \alpha = 1, \dots, M_{T},$$

where $c_{\beta}(\xi_{\alpha}(\tau_{\alpha}); K_{\beta}, T_{\alpha})$ is the numerical solution of (1) with strike K_{β} and expiry time T_{α} .

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem $0 = 0000000$	Experiments 0000	Conclusion 000
Algorithm				
Step 1				

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem $0 = 0000000$	Experiments 0000	$\begin{array}{c} { m Conclusion} \\ { m ooo} \end{array}$
Algorithm				
Step 1				

Step 1.1

We find μ_1 that minimizes the cost function

$$\Gamma_1(\xi) = \frac{1}{N} \sum_{\beta=1}^{N} \left[c_\beta(\xi_1(\tau_1); K_\beta, T_1) - \omega_\beta^1 \right]^2 \chi_\beta^1,$$

 $\tau_1 \in (0, T_1].$

$\underset{00000}{\mathrm{Introduction}}$	Solution to the Direct Problem	Solution to the Inverse Problem $0 = 0000000$	Experiments 0000	$\begin{array}{c} {\rm Conclusion} \\ {\rm 000} \end{array}$
Algorithm				
Step 1				

Step 1.1

We find μ_1 that minimizes the cost function

$$\Gamma_1(\xi) = \frac{1}{N} \sum_{\beta=1}^N \left[c_\beta(\xi_1(\tau_1); K_\beta, T_1) - \omega_\beta^1 \right]^2 \chi_\beta^1,$$

$$\tau_1 \in (0, T_1].$$

Step 1.2

We assume that the volvol function on $(0, T_1]$ is *constant*, defined as $\{\xi_1(\tau)\} = \mu_1$. Then we have

$$\xi(\tau) = \xi_1(\tau) \quad \text{for } \tau \in [0, T_1].$$

$\underset{00000}{\mathrm{Introduction}}$	Solution to the Direct Problem	Solution to the Inverse Problem $000000000000000000000000000000000000$	Experiments 0000	Conclusion 000
Algorithm				
Step 2				

$\underset{00000}{\mathrm{Introduction}}$	Solution to the Direct Problem	Solution to the Inverse Problem $000000000000000000000000000000000000$	Experiments 0000	$\begin{array}{c} {\rm Conclusion} \\ {\rm 000} \end{array}$
Algorithm				
Step 2				

Step 2.1

We find μ_2 that minimizes the cost function

$$\Gamma_{2}(\xi) = \frac{1}{N} \sum_{\beta=1}^{N} \left[c_{\beta}(\xi_{2}(\tau_{2}); K_{\beta}, T_{2}) - \omega_{\beta}^{2} \right]^{2} \chi_{\beta}^{2},$$

 $\tau_2 \in (0, T_2].$

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem 00000000	Experiments 0000	$\begin{array}{c} { m Conclusion} \\ { m ooo} \end{array}$
Algorithm				
Step 2				

Step 2.1

We find μ_2 that minimizes the cost function

$$\Gamma_2(\xi) = \frac{1}{N} \sum_{\beta=1}^{N} \left[c_{\beta}(\xi_2(\tau_2); K_{\beta}, T_2) - \omega_{\beta}^2 \right]^2 \chi_{\beta}^2,$$

Step 2.2

We assume that the volvol function on $(0, T_1]$ is *linear*, defined as $\xi_2(\tau) = a\tau + b$. Then we have

$$\xi(\tau) = \xi_2(\tau) \quad \text{for } \tau \in [0, T_2].$$

 $\tau_2 \in (0, T_2].$

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem	Experiments 0000	
Algorithm				

Figure: $\xi_2(\tau)$

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem 000000000	$\substack{\text{Experiments}\\\text{0000}}$	$\begin{array}{c} { m Conclusion} \\ { m ooo} \end{array}$
Algorithm				
Step 3				

Step 3 is repeated from $\alpha = 3$ to $\alpha = M_T$.

$\substack{\text{Introduction}\\\text{00000}}$	Solution to the Direct Problem	Solution to the Inverse Problem 000000000	$\substack{\text{Experiments}\\\text{0000}}$	$\begin{array}{c} {\rm Conclusion} \\ {\rm 000} \end{array}$
Algorithm				
Step 3				

Step 3 is repeated from $\alpha = 3$ to $\alpha = M_T$.

Step 3.1

We find $\mu_{\alpha} := \{\xi_{\alpha}\}$ that minimizes the cost function

$$\Gamma_{\alpha}(\xi) = \frac{1}{N} \sum_{\beta=1}^{N} \left[c_{\beta}(\xi_{\alpha}(\tau_{\alpha}); K_{\beta}, T_{\alpha}) - \omega_{\beta}^{\alpha} \right]^{2} \chi_{\beta}^{\alpha},$$

 $\tau_{\alpha} \in (0, T_{\alpha}].$

Introduction 00000	Solution to the Direct Problem	Solution to the Inverse Problem 00000000	Experiments 0000	Conclusion 000
Algorithm				
Step 3				

Step 3 is repeated from $\alpha = 3$ to $\alpha = M_T$.

Step 3.1

We find $\mu_{\alpha} := \{\xi_{\alpha}\}$ that minimizes the cost function

$$\Gamma_{\alpha}(\xi) = \frac{1}{N} \sum_{\beta=1}^{N} \left[c_{\beta}(\xi_{\alpha}(\tau_{\alpha}); K_{\beta}, T_{\alpha}) - \omega_{\beta}^{\alpha} \right]^{2} \chi_{\beta}^{\alpha},$$
$$\tau_{\alpha} \in (0, T_{\alpha}].$$

Step 3.2

We define the *linear* volvol function $\xi_{\alpha}(\tau)$ on $[T_{\alpha-3/2}, T_{\alpha}]$ as

$$\xi_{\alpha}(\tau) = \frac{\mu_{\alpha} - \mu_{\alpha-1}}{T_{\alpha} - T_{\alpha-3/2}}(\tau - T_{\alpha}) + \mu_{\alpha}.$$

Figure: $\xi_3(\tau)$

$\underset{00000}{\mathrm{Introduction}}$	Solution to the Direct Problem	Solution to the Inverse Problem 0000000	Experiments 0000	Conclusion 000
Algorithm				
Step 3				

Algorithm Step 3	$\underset{00000}{\mathrm{Introduction}}$	Solution to the Direct Problem	Solution to the Inverse Problem 00000000	$\substack{\text{Experiments}\\\text{0000}}$	$\begin{array}{c} { m Conclusion} \\ { m ooo} \end{array}$
Step 3	Algorithm				
	Step 3				

If $\alpha = 2$, then the volvol function is *linear*:

$$\xi(\tau) = \xi_2(\tau) \quad \text{for } \tau \in [0, T_2].$$

$\underset{00000}{\mathrm{Introduction}}$	Solution to the Direct Problem	Solution to the Inverse Problem 00000000	$\stackrel{\rm Experiments}{\circ \circ \circ \circ}$	Conclusion 000
Algorithm				
Step 3				

If $\alpha = 2$, then the volvol function is *linear*:

$$\xi(\tau) = \xi_2(\tau) \quad \text{for } \tau \in [0, T_2].$$

If $\alpha \ge 3$, the volvol function is *piecewise linear*:

$$\xi(\tau) = \begin{cases} \xi_2(\tau) & \text{for } \tau \in [0, T_{3/2}], \\ \xi_j(\tau) & \text{for } \tau \in [T_{j-3/2}, T_{j-1/2}] \text{ for } 2 < j < \alpha, \\ \xi_\alpha(\tau) & \text{for } \tau \in [T_{\alpha-3/2}, T_{\alpha}], \end{cases}$$

$\underset{00000}{\mathrm{Introduction}}$	Solution to the Direct Problem	Solution to the Inverse Problem 00000000	$\substack{\text{Experiments}\\\text{0000}}$	Conclusion 000
Algorithm				
Step 3				

If $\alpha = 2$, then the volvol function is *linear*:

$$\xi(\tau) = \xi_2(\tau) \quad \text{for } \tau \in [0, T_2].$$

If $\alpha \ge 3$, the volvol function is *piecewise linear*:

$$\xi(\tau) = \begin{cases} \xi_2(\tau) & \text{ for } \tau \in [0, T_{3/2}], \\ \xi_j(\tau) & \text{ for } \tau \in [T_{j-3/2}, T_{j-1/2}] \text{ for } 2 < j < \alpha, \\ \xi_\alpha(\tau) & \text{ for } \tau \in [T_{\alpha-3/2}, T_{\alpha}], \end{cases}$$

Finally, we arrive at the recovered volvol function $\xi(\tau)$ for $\tau \in (0, T_{M_T}]$.

Direct Problem

For our synthetic data test we take

- $x_{\min} = -6$
- $x_{\rm max} = 6$
- $v_{\min} = 0$
- $v_{\rm max} = 10$
- T = 5 years
- $r_d = 0.05$
- $r_f = 0$
- $\theta(\tau) = 0.2$
- $k(\tau) = 2$
- $\rho(\tau) = -0.5$
- $\xi(\tau) = 0.005 + 0.004 \log(\tau + \frac{1}{3})$

Direct Problem

For our synthetic data test we take

- $x_{\min} = -6$
- $x_{\text{max}} = 6$
- $v_{\min} = 0$
- $v_{\rm max} = 10$
- T = 5 years
- $r_d = 0.05$
- $r_f = 0$
- $\theta(\tau) = 0.2$
- $k(\tau) = 2$
- $\rho(\tau) = -0.5$
- $\xi(\tau) = 0.005 + 0.004 \log(\tau + \frac{1}{3})$

When solving the direct problem we take $\Delta \tau = 1/52$.

Direct Problem

Figure: Option price

Implied Volatility of Volatility

Figure: True and recovered volvol

Implied Volatility of Volatility

Figure: True and recovered volvol with perturbed observations

Implications

Implications

The model suits the real market situation.

We adopt a *predictor-corrector* mechanism. At the first step, we assume the volatility is constant. Further, our algorithm builds a linear forward step, which corrects the volatility at half-backward time level. This is done for all the steps except the last one.

The reconstructed volvol function is *piecewise linear*.

The method does not require to invert a formula or an equation.

The algorithm is robust since we need to find only scalar parameters at each step.

Solution to the Direct Proble	

Conclusion

Future research:

Future research:

• Dupire equation

Future research:

- Dupire equation
- regularization, e. g. of Tikhonov type

Future research:

• Dupire equation

- regularization, e. g. of Tikhonov type
- higher order and/or nonstandard finite difference schemes

Future research:

• Dupire equation

- regularization, e. g. of Tikhonov type
- higher order and/or nonstandard finite difference schemes
- American and exotic options

Thank you for your attention!