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Stochastic volatility models

Heston model

The two-factor model introduces two sources of uncertainty by
incorporating a stochastic variance:

dxt �
�
rd � rf � vt

2

	
xtdt�?

vtdW
1
t ,

dvt � kptq�θptq � vt
�
dt� ξptq?vtdW

2
t .

where xt is the log-spot price xt � logSt, vt is the instantaneous
variance, kptq is the speed of mean reversion, θptq is the
long-term mean of the variance, and ξptq is the volatility of the
variance.

The Wiener processes W i
t are correlated with instantaneous

correlation ρptq, i. e.
ErdW 1

t dW
2
t s � ρptqdt.
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Definitions

Heston Model

We consider the two-dimensional general Heston equation for
pricing European call option

BC
Bτ � v

2

B2C
Bx2 � ξ2pτq

2
v
B2C
Bv2 � ξpτqρpτqv B

2C

BxBv
�
�
rd � rf � v

2

	 BC
Bx � kpτq�θpτq � v

�BC
Bv � rdC � 0 (1)

with τ � T � t and the initial condition

Cpx, v, 0q � max
�
exppxq �K, 0

�
.
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Definitions

Heston BC

In the solution to the direct and inverse problems, we use the
Heston boundary conditions:

Cp�8, v, τq � 0,

Cp8, v, 0q � exppxq �K expp�rdτq,
BC
Bτ px, 0, τq � prd � rf qBCBx px, 0, τq

� kpτqθpτqBCBv px, 0, τq � rdCpx, 0, τq � 0,

Cpx,8, 0q � exppxq �K expp�rdτq.

The question about well-posed boundary conditions would be
regarded henceforward.
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Inverse Problem Formulation

Implied Volatility of Volatility

Assume we know the option price C. Then we find that
volatility ξpτq, for which the theoretical result coincides with
the observed quoted price on the market. This volatility is
called implied volatility, i. e.

Cobs � C
�
x, t;K,T, rd, rf , θpτq, kpτq, ρpτq, ξimppτq�.
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Finite Difference Scheme

Discretization of (1)

Let f : rxmin, xmaxs Ñ R and if
xmin � x0   x1   . . .   xI�1 � xmax is the spatial grid,
hi � xi � xi�1, Hi � hi � hi�1, p1 ¤ i ¤ Iq, then the first
derivative f 1pxiq could be approximated in the following ways:

f 1pxiq � fpxiq � fpxi�1q
hi

� Dlfi, (2)

f 1pxiq � fpxi�1q � fpxiq
hi�1

� Drfi (3)

as well as the second derivative f2priq:

f2pxiq � 2

hiHi
fpxi�1q � 2

hihi�1
fpxiq � 2

hi�1Hi
fpxi�1q � D2fi.

(4)
Applying (2), (3) and (4) to (1), we have an upwind implicit
scheme.

8 / 36



Introduction Solution to the Direct Problem Solution to the Inverse Problem Experiments Conclusion

Well-posed Boundary Conditions

Rewriting (1) in terms of the gradient operator gives

BC
Bτ � ∇ � pA∇Cq �BJ �∇C � rdC, (5)

where

A � v

2

�
��� 1 ρξ

ρξ ξ2

�
��� , B �

�
��� �v � ρξ

2
� prd � rf q

�ξ2

2
� kpθ � vq

�
��� .

After multiplying (5) by a function ϕ P H1, we obtain»
Ω

BC
Bτ ϕdΩ �

»
Ω
∇ � pA∇CqϕdΩ�

»
Ω
BJ∇CϕdΩ� rd

»
Ω
CϕdΩ.
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Well-posed Boundary Conditions

After applying the Green first identity to the diffusion term and
choosing ϕ � C, we get

»
Ω

BC
Bτ CdΩ �

»
BΩ

CpA∇Cq � n⃗dpBΩq �
»
Ω
∇CJA∇CdΩ�»

Ω
CBJ∇CdΩ� rd

»
Ω
C2dΩ,

which, rewritten in terms of L2 norms and accounting that
A ¥ 0, yields

1

2

d

dτ
}C}2 ¤

»
BΩ

CpA∇Cq�n⃗dpBΩq�
»
Ω
CBJ∇CdΩ�rd}C}2. (6)
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Well-posed Boundary Conditions

Theorem
If the integrals in (6) vanish or are negative, then the
correspondin IBVP for eq. (1) is well-posed and the following
estimate holds:

∥CpT q∥ ¤ exppbT q∥Cp0q∥,

where 2b � K̄ � rd, K̄ � max
τPr0,T s

kpτq.
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Well-posed Boundary Conditions

Computational Domain

Γu Γu

Γd Γd0

Γl Γr

X-X

x

V

v

Γl � tpx, vq : x � �X, v P p0, V qu,
Γr � tpx, vq : x � X, v P p0, V qu,
Γu � tpx, vq : v � V, x P p�X,Xqu,
Γd � tpx, vq : v � 0, x P p�X,Xqu.
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Well-posed Boundary Conditions

Restricting x and v to a rectangular domain, truncated at
xmin � �X, xmax � X ¡ 0, vmin � 0, vmax � V ¡ 0, forms four
boundaries.

Diffusion terms

»
BΩ

CpA∇Cq�n⃗dpBΩq � �1

2

V»
0

vC

�
ρptqξpτqBCBv � BC

Bx


dv

����
x��X

� 1

2

V»
0

vC

�
ρpτqξpτqBCBv � BC

Bx


dv

����
x�X

� 1

2

X»
�X

vC

�
ξ2pτqBCBv � ρpτqξpτqBCBx



dx

����
v�V

.
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Well-posed Boundary Conditions

Analogously, the terms from the convection integral follows:

Convection terms

»
Ω

CBJ∇CdΩ � 1

2

»
Ω

�
kpτq�θpτq � v

�� 1

2
ξ2pτq


 BC2

Bv dΩ

loooooooooooooooooooooooomoooooooooooooooooooooooon
I1

� 1

2

»
Ω

prd � rf qBC
2

Bx dΩ

loooooooooomoooooooooon
I2

�1

4

»
Ω

�
v � ρpτqξpτq�BC2

Bx dΩ

looooooooooooooomooooooooooooooon
I3

.

Now, we will define the respective well-posed boundary
conditions on the four boundaries.
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Well-posed Boundary Conditions

After integrating by parts we obtain:

I1 �
X»

�X

V»
0

�
kpτq�θptq � v

�� 1

2
ξ2pτq


 BC2

Bv dvdx

�
X»

�X

�
kpτq�θptq � V

�� 1

2
ξ2pτq



C2pV, x, τqdx

�
X»

�X

�
kpτqθpτq � 1

2
ξ2pτq



C2p0, x, τqdx� kpτq

¼
Ω

C2dΩ.
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Well-posed Boundary Conditions

Again, integrating by parts yields:

I2 � prd � rf q
V»
0

�
C2pv,X, τq � C2pv,�X, τq�dv

and

I3 �
V»
0

�
��v � ρpτqξpτq�

X»
�X

BC2

Bx dx

�
dv �

V»
0

�
v � ρpτqξpτq��C2pv,X, τq � C2pv,�X, τq�dv.
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Well-posed Boundary Conditions

Convection terms

»
Ω

CBJ∇CdΩ � 1

2

X»
�X

�
kpτq�θpτq � V

�� 1

2
ξ2pτq



C2px, V, τqdx

� 1

2

X»
�X

�
kpτqθpτq � 1

2
ξ2pτq



C2px, 0, τqdx� kpτq

2

¼
Ω

C2dΩ

� 1

2

V»
0

�
prd � rf q � 1

2

�
v � ρpτqξpτq�
C2pv,X, τqdv

� 1

2

V»
0

�
prd � rf q � 1

2

�
v � ρptqξpτq�
C2pv,�X, τqdv.
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Well-posed Boundary Conditions

Left boundary Γl : x � �X

� 1

2

V»
0

�
v

�
ρpτqξpτqBCBx p�X,V, τq � BC

Bv p�X,V, τq



�
�
prd � rf q � 1

2

�
v � ρpτqξpτq�
C2p�X,V, τq

�
dv.
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Well-posed Boundary Conditions

Down boundary Γd : v � 0

1

2

X»
�X

�
kpτqθpτq � 1

2
ξ2pτq



C2px, 0, τqdx.
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Well-posed Boundary Conditions

Right boundary Γr : x � X

1

2

V»
0

�
ρpτqξpτqBCBx pX, v, τq � BC

Bv pX, v, τq


dv

� 1

2

V»
0

�
prd � rf q � 1

2

�
v � ρpτqξpτq�
C2pX, v, τqdv.
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Well-posed Boundary Conditions

Up boundary Γu : v � V

v

2

X»
�X

�
ξ2pτqBCBx px, V, τq � ρpτqξpτqBCBv px, V, τq



dx

� 1

2

X»
�X

�
kpτq�θptq � V

�� 1

2
ξ2pτq



C2px, V, τqdx.
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Observations Definition

Reconstruction Problem

We have a set of market measurements tωα
β u, where ωα

β is the
quoted price of an option with maturity Tα, α � 1, . . . ,MT and
strikes Kβ, β � 1, . . . , N , assuming that T1 ¤ . . . ¤ TMT

.

We minimize the following

Cost Function

Γαpξq � 1

N

Ņ

β�1

�
cβpξαpταq;Kβ, Tαq � ωα

β

�2
χα
β ,

τα P p0, Tαs, α � 1, . . . ,MT ,

where cβpξαpταq;Kβ, Tαq is the numerical solution of (1) with
strike Kβ and expiry time Tα.
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Algorithm

Step 1

Step 1.1
We find µ1 that minimizes the cost function

Γ1pξq � 1

N

Ņ

β�1

�
cβpξ1pτ1q;Kβ, T1q � ω1

β

�2
χ1
β,

τ1 P p0, T1s.

Step 1.2

We assume that the volvol function on p0, T1s is constant,
defined as tξ1pτqu � µ1. Then we have

ξpτq � ξ1pτq for τ P r0, T1s.
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Algorithm

τ

ξ(τ)

μ1

0 T1

ξ1(τ)

Figure: ξ1pτq
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Algorithm

Step 2

Step 2.1
We find µ2 that minimizes the cost function

Γ2pξq � 1

N

Ņ

β�1

�
cβpξ2pτ2q;Kβ, T2q � ω2

β

�2
χ2
β,

τ2 P p0, T2s.

Step 2.2

We assume that the volvol function on p0, T1s is linear, defined
as ξ2pτq � aτ � b. Then we have

ξpτq � ξ2pτq for τ P r0, T2s.
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Algorithm

τ

ξ(τ)

μ1

0 T1

ξ2(τ)

T2

μ2

T1/2

Figure: ξ2pτq
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Algorithm

Step 3

Step 3 is repeated from α � 3 to α �MT .

Step 3.1

We find µα :� tξαu that minimizes the cost function

Γαpξq � 1

N

Ņ

β�1

�
cβpξαpταq;Kβ, Tαq � ωα

β

�2
χα
β ,

τα P p0, Tαs.

Step 3.2

We define the linear volvol function ξαpτq on rTα�3{2, Tαs as

ξαpτq � µα � µα�1

Tα � Tα�3{2
pτ � Tαq � µα.
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Algorithm

τ

ξ(τ)

μ3

0 T1

ξ2(τ)

T2T3/2 T3

ξ3(τ)
ξ(T3/2)

Figure: ξ3pτq
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Algorithm

Step 3

If α � 2, then the volvol function is linear:

ξpτq � ξ2pτq for τ P r0, T2s.

If α ¥ 3, the volvol function is piecewise linear:

ξpτq �
$&
%

ξ2pτq for τ P r0, T3{2s,
ξjpτq for τ P rTj�3{2, Tj�1{2s for 2   j   α,

ξαpτq for τ P rTα�3{2, Tαs,

Finally, we arrive at the recovered volvol function ξpτq for
τ P p0, TMT

s.
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Direct Problem

For our synthetic data test we take
xmin � �6
xmax � 6

vmin � 0

vmax � 10

T � 5 years
rd � 0.05

rf � 0

θpτq � 0.2

kpτq � 2

ρpτq � �0.5
ξpτq � 0.005� 0.004 logpτ � 1{3q

When solving the direct problem we take △τ � 1{52.
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Direct Problem

Figure: Option price
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Implied Volatility of Volatility
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Implications

The model suits the real market situation.

We adopt a predictor-corrector mechanism. At the first step, we
assume the volatility is constant. Further, our algorithm builds
a linear forward step, which corrects the volatility at
half-backward time level. This is done for all the steps except
the last one.

The reconstructed volvol function is piecewise linear.

The method does not require to invert a formula or an equation.

The algorithm is robust since we need to find only scalar
parameters at each step.
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Conclusion

Future research:

Dupire equation

regularization, e. g. of Tikhonov type
higher order and/or nonstandard finite difference schemes
American and exotic options
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Thank you for your attention!
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