$\underset{0000}{\mathsf{Model identification}}$

The Fourier estimation method 000

Simulation study and empirical analysis

Identifying the number of latent factors of stochastic volatility models

S. Sanfelici, E. Allaj and M.E. Mancino

ICCF24 Amsterdam, April 2-5, 2024

The Fourier estimation method

Simulation study and empirical analysis

Motivation

Introduction

- Accurate specification of asset price dynamics is of crucial importance in financial risk management, pricing and hedging of derivative securities.
- As is well known in financial mathematics, under the no-arbitrage condition, price processes must be **semimartingales**. A huge amount of work has been done in the last thirty years in order to render the assumptions about the data generating processes of the price series more in line with the empirical evidence.
- Traditionally, the construction of statistical tests and model calibration procedures requires the **use of option data**. However, the outcome of the tests may be rather sensitive to moneyness and maturity of the options.

The Fourier estimation method

Simulation study and empirical analysis

Motivation

Introduction

0000

• Conversely, the approach followed here simply requires the use of **prices of the underlying asset** and does not require any calibration procedures via option prices.

The Fourier estimation method

Simulation study and empirical analysis

Motivation

Introduction

- Conversely, the approach followed here simply requires the use of **prices of the underlying asset** and does not require any calibration procedures via option prices.
- The correct identification of an appropriate semimartingale model can nowadays benefit from the use of **high-frequency data**. Unfortunately, **market microstructure effects** make that more difficult.

The Fourier estimation method

Simulation study and empirical analysis

Motivation

Introduction

- Conversely, the approach followed here simply requires the use of **prices of the underlying asset** and does not require any calibration procedures via option prices.
- The correct identification of an appropriate semimartingale model can nowadays benefit from the use of **high-frequency data**. Unfortunately, **market microstructure effects** make that more difficult.
- Our method is **fully non-parametric** and takes advantage from the well established ability of the **Fourier estimator** [Malliavin and Mancino, 2002] to estimate iterated co-variation processes from discrete (high-frequency) price observations.

The Fourier estimation method

Simulation study and empirical analysis

Literature: specification tests for diffusion models

Methods based on low frequency observations: maximum likelihood estimator [Fermanian and Salanié, 2004]; minimization of weighted distances between non-parametric conditional densities [Altissimo and Mele, 2009]...

Methods based on infill asymptotics: [Corradi and White, 1999], [Dette and von Lieres und Wilkau, 2003], [Dette et al., 2006]; [Jacod and Podolskij, 2013] based upon a matrix perturbation method; [Kunimoto and Kurisu, 2021] based on the separating information maximum likelihood method; [Billio et al., 2012], [Figini et al., 2020], based on the principal components analysis and Granger-causality network.

Model identification 0000

The Fourier estimation method 000

Simulation study and empirical analysis

Literature: specification tests for diffusion models

The above mentioned papers try to answer to the following question: what is the minimal amount of independent Brownian motions required for modeling a d-dimensional diffusion?

Model identification

The Fourier estimation method

Simulation study and empirical analysis

Literature: specification tests for diffusion models

The above mentioned papers try to answer to the following question: what is the minimal amount of independent Brownian motions required for modeling a d-dimensional diffusion?

Although based on similar rationale, our aim is more specifically to **reveal the latent factors that drive a single price process**. Therefore, we are more focused on **modeling error** and its possible effects on the pricing of derivative securities.

Model identification

The Fourier estimation method

Simulation study and empirical analysis

Literature: specification tests for diffusion models

The above mentioned papers try to answer to the following question: what is the minimal amount of independent Brownian motions required for modeling a d-dimensional diffusion?

Although based on similar rationale, our aim is more specifically to **reveal the latent factors that drive a single price process**. Therefore, we are more focused on **modeling error** and its possible effects on the pricing of derivative securities.

Procedures to test the assumption of a local volatility model for the price dynamics against the alternative of a stochastic volatility model: [Corradi and Distaso, 2007], [Podolskij and Rosenbaum, 2012], [Dette and Podolskij, 2008], [Zu, 2015], [Ait-Sahalia, 1996], [Zu and Boswijk, 2017], [Corradi and Swanson, 2011], [Corradi and Distaso, 2006].

Model identification

The Fourier estimation method

Simulation study and empirical analysis

The Identification Method

We consider a fairly general class of stochastic volatility models. Let p(t) be the log-asset price observed at time t.

$$dp(t) = \alpha(t)dt + \sigma(t)dW_t^1, \qquad (1)$$

$$d\sigma^{2}(t) = \beta(t)dt + \gamma(t) dW_{t}^{2}, \qquad (2)$$

$$d\gamma^{2}(t) = \eta(t)dt + v_{\gamma}(t) dW_{t}^{3}, \qquad (3)$$

where W^1 , W^2 , W^3 are (possibly) correlated Brownian motions on a filtered probability space $(\Omega, (\mathcal{F}_t)_{t \in [0, T]}, P)$. The usual regularity conditions hold.

Model identification ○●○○ The Fourier estimation method 000

Simulation study and empirical analysis

The Identification Method

The model's identification method is based on **determining the number of non-zero eigenvalues of the variance-covariance matrix** associated to the price process and the higher order covariances.

More precisely, denote by $\langle\,,\rangle$ the quadratic (co-)variation operation, and define the following volatilities:

$$\langle dp_t \,,\, dp_t \rangle / dt := A_t \,,\, \langle dA_t \,,\, dA_t \rangle / dt := B_t \,,\, \langle dB_t \,,\, dB_t \rangle / dt := C_t \,,$$

$$(4)$$

and cross-volatilities:

$$\langle dA_t, dp_t \rangle / dt := a_t , \langle dB_t, dp_t \rangle / dt := b_t, \langle dA_t, dB_t \rangle / dt := c_t.$$
(5)

Introd	uction
0000	

The Fourier estimation method 000

Simulation study and empirical analysis

The Identification Method

For every $t \in (0, 2\pi)$, consider the following the 3 \times 3 Gram matrix

$$\Gamma_t = \begin{pmatrix} A_t & a_t & b_t \\ a_t & B_t & c_t \\ b_t & c_t & C_t \end{pmatrix}$$
(6)

and denote by $\lambda_1(t) \ge \lambda_2(t) \ge \lambda_3(t) \ge 0$ its eigenvalues.

The matrix $\Gamma(t)$ is the variance-covariance matrix for the SDEs system (1)-(2)-(3). Thus, it has **rank equal to one** if W^1, W^2, W^3 are perfectly correlated, as it is for the level dependent volatility models (like Black-Scholes or CEV model), **two** in the case of a stochastic volatility model (like Heston model), or **three** for the stochastic volatility of volatility models.

Model identification

The Fourier estimation method

Simulation study and empirical analysis

The Identification Method

More precisely, we will test the number of factors through the following three processes

$$\xi(t) := \frac{\lambda_1(t)}{\lambda_1(t) + \lambda_2(t) + \lambda_3(t)}$$
(7)

$$\theta(t) := \frac{\lambda_2(t)}{\lambda_1(t) + \lambda_2(t) + \lambda_3(t)}$$
(8)

$$\psi(t) := \frac{\lambda_3(t)}{\lambda_1(t) + \lambda_2(t) + \lambda_3(t)}.$$
(9)

In order to perform the model-free estimation of the eigenvalues, we need to estimate non-parametrically the entries of the matrix. To this aim, in the next section we exploit the **Fourier estimation method**

 $\underset{0000}{\mathsf{Model identification}}$

The Fourier estimation method $\bullet \circ \circ$

Simulation study and empirical analysis

The Fourier estimator of iterated co-variations

Define, for $|k| \leq N$,

$$c_k(A_{n,N}) := \frac{2\pi}{2N+1} \sum_{|s| \leq N} c_s(dp_n) c_{k-s}(dp_n),$$

where

$$c_k(dp_n)=rac{1}{2\pi}\sum_{j=0}^{k_n-1}e^{-\mathrm{i}kt_{j,n}}\delta_j(p).$$

Model identification

The Fourier estimation method $\bullet \circ \circ$

Simulation study and empirical analysis

The Fourier estimator of iterated co-variations

Define, for $|k| \leq N$,

$$c_k(A_{n,N}) := \frac{2\pi}{2N+1} \sum_{|s| \leq N} c_s(dp_n) c_{k-s}(dp_n),$$

where

$$c_k(dp_n)=rac{1}{2\pi}\sum_{j=0}^{k_n-1}e^{-\mathrm{i}kt_{j,n}}\delta_j(p).$$

Then $\widehat{A}_{n,N,N_A}(t) := \sum_{|k| < N_A} \left(1 - \frac{|k|}{N_A}\right) c_k(A_{n,N}) e^{ikt}.$

Model identification 0000

The Fourier estimation method $\circ \bullet \circ$

Simulation study and empirical analysis

The Fourier estimator of iterated co-variations

The knowledge of the Fourier coefficients of the latent instantaneous volatility A(t) allows us to handle this process as an observable variable and we can iterate the procedure in order to estimate the other variance and co-variance functions.

The consistency and CLT of the estimators have been studied under suitable conditions on the cut-off frequencies N = O(n), $N_A = O(n^{1/2})$, $M = O(n^{1/2})$, $M_B = O(n^{1/4})$, $L = O(n^{1/4})$, $L_C = O(n^{1/8})$, $M_a = O(n^{1/4})$, $L_b = O(n^{1/8})$ and $L_c = O(n^{1/8})$.

Model identification 0000

The Fourier estimation method $\circ \circ \bullet$

Simulation study and empirical analysis

Uniform consistency of the eigenvalue estimation

Theorem

Under suitable assumptions on the cut-off frequencies, the following convergence in probability holds

$$\lim_{n,M,N,L,M_a,M_b,L_c\to\infty}\sup_{t\in(0,2\pi)}|\hat{\lambda}_j(t)-\lambda_j(t)|=0, \quad (10)$$

for j = 1, 2, 3.

Model identification

The Fourier estimation method $\circ \circ \bullet$

Simulation study and empirical analysis

Uniform consistency of the eigenvalue estimation

Theorem

Under suitable assumptions on the cut-off frequencies, the following convergence in probability holds

$$\lim_{n,M,N,L,M_a,M_b,L_c\to\infty}\sup_{t\in(0,2\pi)}|\hat{\lambda}_j(t)-\lambda_j(t)|=0, \qquad (10)$$

for j = 1, 2, 3.

Proof: By the Weyl's Perturbation Theorem, we get

$$\sup_{t\in(0,2\pi)}|\hat{\lambda}_j(t)-\lambda_j(t)|\leq \sqrt{3}\sup_{t\in(0,2\pi)}\|\hat{\mathsf{\Gamma}}(t)-\mathsf{\Gamma}(t)\|_\infty.$$

Model identification

The Fourier estimation method

Simulation study and empirical analysis

- Black-Scholes and Constant Elasticity of Variance model
- Heston model
- Stochastic Volatility of Volatility model
- Intraday prices from the **S&P 500 index futures**, for the period from January 2, 2008 to December 31, 2008

Model identification

The Fourier estimation method $_{\rm OOO}$

Simulation study and empirical analysis

- Black-Scholes and Constant Elasticity of Variance model
- Heston model
- Stochastic Volatility of Volatility model
- Intraday prices from the **S&P 500 index futures**, for the period from January 2, 2008 to December 31, 2008

For each model, firstly, the entries of the Gram matrix are estimated by the **Fourier method**; Then, the eigenvalues $\hat{\lambda}_1(t)$, $\hat{\lambda}_2(t)$, $\hat{\lambda}_3(t)$ of the estimated matrix and the normalized quantities $\hat{\gamma}(t)$, $\hat{\beta}(t)$, $\hat{\rho}(t)$ are computed and examined.

Model identification

The Fourier estimation method 000

Simulation study and empirical analysis

- Black-Scholes and Constant Elasticity of Variance model
- Heston model
- Stochastic Volatility of Volatility model
- Intraday prices from the **S&P 500 index futures**, for the period from January 2, 2008 to December 31, 2008

For each model, firstly, the entries of the Gram matrix are estimated by the **Fourier method**; Then, the eigenvalues $\hat{\lambda}_1(t)$, $\hat{\lambda}_2(t)$, $\hat{\lambda}_3(t)$ of the estimated matrix and the normalized quantities $\hat{\gamma}(t)$, $\hat{\beta}(t)$, $\hat{\rho}(t)$ are computed and examined.

We use the **Euler-Maruyama discretization scheme** with a step-size equal to $\frac{2\pi}{21600}$ over the interval $[0, 2\pi]$. **Cut-off frequencies:** N = n/2, $N_A = n^{1/2}$, $M = N_A/2$, $M_B = (16M)^{1/2}$, $L = M_B/2$, $L_C = (16L)^{1/2}$, $M_a = M_B$, and $L_b = L_c = L_C$. The Fourier estimates of the eigenvalues are evaluated on $2L_C$ equally spaced points in the interval $(0, 2\pi)$.

Introduction	
0000	

The Fourier estimation method

Simulation study and empirical analysis

The Black-Scholes model

$$dp(t) = \left(\alpha - \frac{1}{2}\sigma^{2}\right)dt + \sigma dW(t)$$
$$\Gamma_{t} = \left(\begin{matrix}\sigma^{2} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{matrix}\right)$$
$$\lambda_{1}(t) = \sigma^{2}, \quad \lambda_{2}(t) = 0, \quad \lambda_{2}(t) = 0$$

Introdu	ction
0000	

The Fourier estimation method

Simulation study and empirical analysis

The Black-Scholes model

$$dp(t) = \left(lpha - rac{1}{2}\sigma^2
ight)dt + \sigma dW(t)$$
 $\Gamma_t = \left(egin{matrix} \sigma^2 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ \end{pmatrix}$
 $\lambda_1(t) = \sigma^2, \quad \lambda_2(t) = 0, \quad \lambda_2(t) = 0$

We expect that $\hat{\gamma}(t) \approx 1$, while $\hat{\beta}(t) \approx 0$ and $\hat{\rho}(t) \approx 0$.

Introduction	
0000	

The Fourier estimation method

Simulation study and empirical analysis

The Black-Scholes model

Figure: BS model. The first and the second panel show the log-price p(t), the Fourier estimate of the spot volatility A(t) (":"), the estimated eigenvalue $\hat{\lambda}_1(t)$ ("-") and the true spot volatility A(t) ("-") of the BS model. The third and the fourth panel plot the estimated eigenvalues $\hat{\lambda}_2(t)$ and $\hat{\lambda}_3(t)$.

Model identification

The Fourier estimation method

Simulation study and empirical analysis

The Black-Scholes model

Figure: BS model. The figure shows the values of $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}(t)$ for the BS model.

Model identification

The Fourier estimation method

Simulation study and empirical analysis

The Black-Scholes model

Table: BS model. Some statistics on $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}_t$

	Min	Max	Mean	SD
$\hat{\gamma}(t)$	0.9672	1.0000	0.9928	0.0059
$\hat{eta}(t)$	6.5236e-06	0.0328	0.0072	0.0059
$\hat{ ho}(t)$	0.0000	8.9366e-05	7.8658e-06	1.6236e-05

Model identification

The Fourier estimation method $_{\rm OOO}$

$$dp(t) = \left(\alpha - \frac{1}{2}\sigma^2 e^{2p(t)(\delta - 1)}\right) dt + \sigma e^{p(t)(\delta - 1)} dW_t$$

Model identification

The Fourier estimation method $_{\rm OOO}$

$$dp(t) = \left(\alpha - \frac{1}{2}\sigma^2 e^{2p(t)(\delta - 1)}\right) dt + \sigma e^{p(t)(\delta - 1)} dW_t$$

$$\lambda_1(t) = A(t) + B(t) + C(t), \qquad \lambda_2(t) = \lambda_3(t) = 0$$

Model identification

The Fourier estimation method $_{\rm OOO}$

Simulation study and empirical analysis

Figure: CEV model. The first panel shows the estimated eigenvalue $\hat{\lambda}_1(t)$ ("-") and the true eigenvalue $\lambda_1(t)$ ("--") of the CEV model. The other panels plot the estimated eigenvalues $\hat{\lambda}_2(t)$ and $\hat{\lambda}_3(t)$.

Model identification

The Fourier estimation method 000

Simulation study and empirical analysis

Figure: CEV model. The figure show the values of $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}(t)$ for the CEV model.

Introduction	
0000	

The Fourier estimation method $_{\rm OOO}$

The Heston model

$$dp(t) = \left(\alpha - \frac{1}{2}\sigma^{2}(t)\right)dt + \sigma(t)dW_{t}^{1} \qquad (17)$$

$$d\sigma^{2}(t) = \kappa(\theta - \sigma^{2}(t))dt + \nu\sigma(t)dW_{t}^{2}, \qquad (18)$$

$$A(t) = \sigma^{2}(t), \quad B(t) = \nu^{2}\sigma^{2}(t)$$
 (19)

$$C(t) = \nu^{6} \sigma^{2}(t) \quad a(t) = \psi \nu \sigma^{2}(t),$$
(20)

$$b(t) = \psi \nu^{3} \sigma^{2}(t), \quad c(t) = \nu^{4} \sigma^{2}(t).$$
 (21)

Introd	uction
0000	

The Fourier estimation method

Simulation study and empirical analysis

The Heston model

$$dp(t) = \left(\alpha - \frac{1}{2}\sigma^2(t)\right)dt + \sigma(t)dW_t^1$$
 (17)

$$d\sigma^{2}(t) = \kappa(\theta - \sigma^{2}(t))dt + \nu\sigma(t)dW_{t}^{2}, \qquad (18)$$

$$A(t) = \sigma^{2}(t), \quad B(t) = \nu^{2}\sigma^{2}(t)$$
 (19)

$$C(t) = \nu^6 \sigma^2(t) \quad a(t) = \psi \nu \sigma^2(t),$$
 (20)

$$b(t) = \psi \nu^3 \sigma^2(t), \quad c(t) = \nu^4 \sigma^2(t).$$
 (21)

$$\lambda_1(t) = \lambda_1 \sigma^2(t), \ \ \lambda_2(t) = \lambda_2 \sigma^2(t), \ \ \lambda_3(t) = 0,$$

where

$$\lambda_{1,2} = \frac{(1+\nu^2+\nu^6) \pm \sqrt{(1+\nu^2+\nu^6)^2 - 4(1-\psi^2)(\nu^2+\nu^6)}}{2}.$$

duction	Model	identi
0	0000	

The Fourier estimation method

Simulation study and empirical analysis

The Heston model

Figure: The first and the second panel show the estimated eigenvalues $\hat{\lambda}_1(t)$, $\hat{\lambda}_2(t)$ ("-") and the true eigenvalues $\lambda_1(t)$ and $\lambda_2(t)$ ("--") of the Heston model. The last panel plots the estimated eigenvalue $\hat{\lambda}_3(t)$.

Introd	uction
0000	

The Fourier estimation method

Simulation study and empirical analysis

The Heston model

Figure: The figure shows the values of $\hat{\gamma}(t), \hat{\beta}(t)$ and $\hat{\rho}(t)$ for the Heston model.

 $\underset{0000}{\mathsf{Model identification}}$

The Fourier estimation method

Simulation study and empirical analysis

The Heston model

Table: Some statistics on $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}(t)$

	Min	Max	Mean	SD
$\hat{\gamma}(t)$	0.5582	0.9814	0.8804	0.1178
$\hat{eta}(t)$	0.0151	0.4418	0.1087	0.1082
$\hat{ ho}(t)$	0.0000	0.0697	0.0109	0.0180

Model identification

The Fourier estimation method $_{\rm OOO}$

Simulation study and empirical analysis

The Stochastic Volatility of Volatility model

$$dp(t) = \left(\alpha - \frac{\sigma^2(t)}{2}\right) dt + \sigma(t) dW_t^1$$
 (22)

$$d\sigma^{2}(t) = \kappa(\theta - \sigma^{2}(t))dt + \xi(t)dW_{t}^{2}$$
(23)

$$d\xi^2(t) = \kappa_{\xi}(\theta_{\xi} - \xi^2(t))dt + \nu_{\xi}\xi(t)dW_t^3, \qquad (24)$$

$$A(t) = \sigma^{2}(t), \quad B(t) = \xi^{2}(t),$$
 (25)

$$C(t) = \nu_{\xi}^{2}\xi^{2}(t), \quad a(t) = \psi\xi(t)\sigma(t)$$
(26)

$$b(t) = 0, \quad c(t) = 0.$$
 (27)

Model identification

The Fourier estimation method $_{\rm OOO}$

Simulation study and empirical analysis

The Stochastic Volatility of Volatility model

$$dp(t) = \left(\alpha - \frac{\sigma^2(t)}{2}\right) dt + \sigma(t) dW_t^1$$
 (22)

$$d\sigma^{2}(t) = \kappa(\theta - \sigma^{2}(t))dt + \xi(t)dW_{t}^{2}$$
(23)

$$d\xi^2(t) = \kappa_{\xi}(\theta_{\xi} - \xi^2(t))dt + \nu_{\xi}\xi(t)dW_t^3, \qquad (24)$$

$$A(t) = \sigma^{2}(t), \quad B(t) = \xi^{2}(t),$$
 (25)

$$C(t) = \nu_{\xi}^2 \xi^2(t), \quad a(t) = \psi \xi(t) \sigma(t)$$
(26)

$$b(t) = 0, \quad c(t) = 0.$$
 (27)

$$\lambda_1(t) = \nu_\xi^2 \xi(t)^2$$

and

$$\lambda_{2,3}(t) = \xi(t)^2 \sigma^2(t) \pm \sqrt{(\xi^2(t) + \sigma^2(t))^2 - \xi^2(t)\sigma^2(t)(1 - \psi^2)}.$$

Model identification

The Fourier estimation method

Simulation study and empirical analysis

The Stochastic Volatility of Volatility model

Figure: The figure shows the values of $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}(t)$ for the SVV model.

Model identification

The Fourier estimation method

Simulation study and empirical analysis

The Stochastic Volatility of Volatility model

Table: Some statistics on $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}(t)$

	Min	Max	Mean	SD
$\hat{\gamma}(t)$	0.4607	0.9809	0.7591	0.1346
$\hat{eta}(t)$	0.0191	0.4608	0.2030	0.1076
$\hat{ ho}(t)$	0.0000	0.2230	0.0379	0.0602

The Fourier estimation method

Empirical study

We use the tick-by-tick data of the S&P 500 index futures for the period from January 2, 2008 to December 31, 2008. **Our dataset includes the collapse of Lehman Brothers**, the peak of the global financial crisis of 2007-2008.

Model identification 0000

The Fourier estimation method

Simulation study and empirical analysis

Empirical study

We use the tick-by-tick data of the S&P 500 index futures for the period from January 2, 2008 to December 31, 2008. **Our dataset includes the collapse of Lehman Brothers**, the peak of the global financial crisis of 2007-2008.

Cut-off frequencies: due to microstructure effects, the value for the cutting frequency *N* is derived using the procedure in [Mancino and Sanfelici, 2008]. The other frequencies are $N_A = (8n)^{1/2}$, $M = N_A/2$, $M_B = (16M)^{1/2}$, $L = M_B/2$, $L_C = (8L)^{1/2}$, $M_a = M_B$ and $L_b = L_c = L_C$.

The Fourier estimation method

Empirical study

We use the tick-by-tick data of the S&P 500 index futures for the period from January 2, 2008 to December 31, 2008. **Our dataset includes the collapse of Lehman Brothers**, the peak of the global financial crisis of 2007-2008.

Cut-off frequencies: due to microstructure effects, the value for the cutting frequency *N* is derived using the procedure in [Mancino and Sanfelici, 2008]. The other frequencies are $N_A = (8n)^{1/2}$, $M = N_A/2$, $M_B = (16M)^{1/2}$, $L = M_B/2$, $L_C = (8L)^{1/2}$, $M_a = M_B$ and $L_b = L_c = L_C$.

To keep these parameters large enough, we exclude days with less than 1000 trades from our sample, leaving us with 240 days.

Model identification

The Fourier estimation method $_{\rm OOO}$

Empirical study

			^	^	^	^
Table: So	me statistics	on $\hat{\gamma}(t)$,	$\beta(t), \hat{\rho}(t).$	$\lambda_1(t),$	$\lambda_2(t)$ and	d $\lambda_3(t)$

	Min	Max	Mean	SD
$\hat{\gamma}(t)$	0.7171	1.0000	0.9963	0.0124
$\hat{eta}(t)$	0.0000	0.2819	0.0037	0.0124
$\hat{ ho}(t)$	0.0000	0.0123	1.0412e-05	2.3767e-04
$\hat{\lambda}_1(t)$	1.5020e-06	0.0128	1.1871e-04	4.2712e-04
$\hat{\lambda}_2(t)$	1.8285e-06	0.0012	2.8133e-05	1.0558e-05
$\hat{\lambda}_3(t)$	0.0000	4.3946e-06	3.4117e-09	7.5914e-08

Model identification 0000

The Fourier estimation method 000

Simulation study and empirical analysis

Empirical study

Figure: Panels 1-3 show the values of $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}(t)$ for the day **January 3, 2008**. Panels 4-6 show the values of $\hat{\gamma}(t)$, $\hat{\beta}(t)$ and $\hat{\rho}(t)$ for the day **October 10, 2008**.

Model identification

The Fourier estimation method

Empirical study

Figure: Panels 1 and 3 show the log-price p(t) for the day January 3, 2008 and October, 10 2008. Panels 2 and 4 show the **scree plots** corresponding to the temporal instants of day January 3, 2008 and October, 10 2008 having, respectively, the maximum value of $\hat{\gamma}(t)$ and $\hat{\beta}(t)$.

Model identification

The Fourier estimation method

Simulation study and empirical analysis

Allaj, E., Mancino, M.E. and Sanfelici, S., (2023) *Identifying the number of latent factors of stochastic volatility models*. Working Paper.

https://sites.google.com/view/fourier-malliavinvolatilityest/home-page

THANK YOU

for your attention