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Motivation

Accurate specification of asset price dynamics is of crucial
importance in financial risk management, pricing and hedging
of derivative securities.

As is well known in financial mathematics, under the
no-arbitrage condition, price processes must be
semimartingales. A huge amount of work has been done in
the last thirty years in order to render the assumptions about
the data generating processes of the price series more in line
with the empirical evidence.

Traditionally, the construction of statistical tests and model
calibration procedures requires the use of option data.
However, the outcome of the tests may be rather sensitive to
moneyness and maturity of the options.
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Motivation

Conversely, the approach followed here simply requires the use
of prices of the underlying asset and does not require any
calibration procedures via option prices.

The correct identification of an appropriate semimartingale
model can nowadays benefit from the use of high-frequency
data. Unfortunately, market microstructure effects make
that more difficult.

Our method is fully non-parametric and takes advantage
from the well established ability of the Fourier estimator
[Malliavin and Mancino, 2002] to estimate iterated
co-variation processes from discrete (high-frequency) price
observations.
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Literature: specification tests for diffusion models

Methods based on low frequency observations: maximum
likelihood estimator [Fermanian and Salanié, 2004]; minimization
of weighted distances between non-parametric conditional densities
[Altissimo and Mele, 2009]...

Methods based on infill asymptotics: [Corradi and White,
1999], [Dette and von Lieres und Wilkau, 2003], [Dette et al.,
2006]; [Jacod and Podolskij, 2013] based upon a matrix
perturbation method; [Kunimoto and Kurisu, 2021] based on the
separating information maximum likelihood method; [Billio et al.,
2012], [Figini et al., 2020], based on the principal components
analysis and Granger-causality network.
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Literature: specification tests for diffusion models

The above mentioned papers try to answer to the following
question: what is the minimal amount of independent Brownian
motions required for modeling a d-dimensional diffusion?

Although based on similar rationale, our aim is more specifically to
reveal the latent factors that drive a single price process.
Therefore, we are more focused on modeling error and its possible
effects on the pricing of derivative securities.

Procedures to test the assumption of a local volatility model for
the price dynamics against the alternative of a stochastic volatility
model: [Corradi and Distaso, 2007], [Podolskij and Rosenbaum,
2012], [Dette and Podolskij, 2008], [Zu, 2015], [Ait-Sahalia, 1996],
[Zu and Boswijk, 2017], [Corradi and Swanson, 2011], [Corradi and
Distaso, 2006].
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The Identification Method

We consider a fairly general class of stochastic volatility models.
Let p(t) be the log-asset price observed at time t.

dp(t) = α(t)dt + σ(t)dW 1
t , (1)

dσ2(t) = β(t)dt + γ(t) dW 2
t , (2)

dγ2(t) = η(t)dt + vγ(t) dW
3
t , (3)

where W 1,W 2,W 3 are (possibly) correlated Brownian motions on
a filtered probability space (Ω, (Ft)t∈[0,T ],P). The usual regularity
conditions hold.
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The Identification Method

The model’s identification method is based on determining the
number of non-zero eigenvalues of the variance-covariance
matrix associated to the price process and the higher order
covariances.
More precisely, denote by ⟨ , ⟩ the quadratic (co-)variation
operation, and define the following volatilities:

⟨dpt , dpt⟩/dt := At , ⟨dAt , dAt⟩/dt := Bt , ⟨dBt , dBt⟩/dt := Ct ,
(4)

and cross-volatilities:

⟨dAt , dpt⟩/dt := at , ⟨dBt , dpt⟩/dt := bt , ⟨dAt , dBt⟩/dt := ct .
(5)
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The Identification Method

For every t ∈ (0, 2π), consider the following the 3× 3 Gram matrix

Γt =

At at bt
at Bt ct
bt ct Ct

 (6)

and denote by λ1(t) ≥ λ2(t) ≥ λ3(t) ≥ 0 its eigenvalues.

The matrix Γ(t) is the variance-covariance matrix for the SDEs
system (1)-(2)-(3). Thus, it has rank equal to one if
W 1,W 2,W 3 are perfectly correlated, as it is for the level
dependent volatility models (like Black-Scholes or CEV model),
two in the case of a stochastic volatility model (like Heston
model), or three for the stochastic volatility of volatility models.
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The Identification Method

More precisely, we will test the number of factors through the
following three processes

ξ(t) :=
λ1(t)

λ1(t) + λ2(t) + λ3(t)
(7)

θ(t) :=
λ2(t)

λ1(t) + λ2(t) + λ3(t)
(8)

ψ(t) :=
λ3(t)

λ1(t) + λ2(t) + λ3(t)
. (9)

In order to perform the model-free estimation of the eigenvalues,
we need to estimate non-parametrically the entries of the matrix.
To this aim, in the next section we exploit the Fourier estimation
method
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The Fourier estimator of iterated co-variations

Define, for |k| ≤ N,

ck(An,N) :=
2π

2N + 1

∑
|s|≤N

cs(dpn)ck−s(dpn),

where

ck(dpn) =
1

2π

kn−1∑
j=0

e−iktj,nδj(p).

Then Ân,N,NA
(t) :=

∑
|k|<NA

(
1− |k|

NA

)
ck(An,N)e

ikt .
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The Fourier estimator of iterated co-variations

The knowledge of the Fourier coefficients of the latent
instantaneous volatility A(t) allows us to handle this process as
an observable variable and we can iterate the procedure in
order to estimate the other variance and co-variance functions.

The consistency and CLT of the estimators have been studied
under suitable conditions on the cut-off frequencies N = O(n),
NA = O(n1/2), M = O(n1/2), MB = O(n1/4), L = O(n1/4),
LC = O(n1/8), Ma = O(n1/4), Lb = O(n1/8) and Lc = O(n1/8).
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Uniform consistency of the eigenvalue estimation

Theorem

Under suitable assumptions on the cut-off frequencies, the
following convergence in probability holds

lim
n,M,N,L,Ma,Mb,Lc→∞

sup
t∈(0,2π)

|λ̂j(t)− λj(t)| = 0, (10)

for j = 1, 2, 3.

Proof: By the Weyl’s Perturbation Theorem, we get

sup
t∈(0,2π)

|λ̂j(t)− λj(t)| ≤
√
3 sup
t∈(0,2π)

∥Γ̂(t)− Γ(t)∥∞.
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Simulation study and empirical analysis

Black-Scholes and Constant Elasticity of Variance model
Heston model
Stochastic Volatility of Volatility model
Intraday prices from the S&P 500 index futures, for the
period from January 2, 2008 to December 31, 2008

For each model, firstly, the entries of the Gram matrix are
estimated by the Fourier method; Then, the eigenvalues λ̂1(t),
λ̂2(t), λ̂3(t) of the estimated matrix and the normalized quantities
γ̂(t), β̂(t), ρ̂(t) are computed and examined.

We use the Euler-Maruyama discretization scheme with a step-size

equal to 2π
21600 over the interval [0, 2π].

Cut-off frequencies: N = n/2, NA = n1/2, M = NA/2, MB = (16M)1/2,

L = MB/2, LC = (16L)1/2, Ma = MB , and Lb = Lc = LC .

The Fourier estimates of the eigenvalues are evaluated on 2LC
equally spaced points in the interval (0, 2π).
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The Black-Scholes model

dp(t) =

(
α− 1

2
σ2

)
dt + σdW (t)

Γt =

σ2 0 0
0 0 0
0 0 0


λ1(t) = σ2, λ2(t) = 0, λ2(t) = 0

We expect that γ̂(t) ≈ 1, while β̂(t) ≈ 0 and ρ̂(t) ≈ 0.
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The Black-Scholes model
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Figure: BS model. The first and the second panel show the log-price
p(t), the Fourier estimate of the spot volatility A(t) (”:”), the estimated
eigenvalue λ̂1(t) (”-”) and the true spot volatility A(t) (”- -”) of the BS
model. The third and the fourth panel plot the estimated eigenvalues
λ̂2(t) and λ̂3(t).
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The Black-Scholes model
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Figure: BS model. The figure shows the values of γ̂(t), β̂(t) and ρ̂(t) for
the BS model.
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The Black-Scholes model

Table: BS model. Some statistics on γ̂(t), β̂(t) and ρ̂t

Min Max Mean SD

γ̂(t) 0.9672 1.0000 0.9928 0.0059

β̂(t) 6.5236e-06 0.0328 0.0072 0.0059
ρ̂(t) 0.0000 8.9366e-05 7.8658e-06 1.6236e-05
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The Constant Elasticity of Variance model

dp(t) =

(
α− 1

2
σ2 e2p(t)(δ−1)

)
dt + σep(t)(δ−1)dWt

A(t) := ⟨dp(t), dp(t)⟩/dt = σ2e2p(t)(δ−1) (11)

a(t) := ⟨dA(t), dp(t)⟩/dt = 2σ4(δ − 1)e4p(t)(δ−1) (12)

B(t) := ⟨dA(t), dA(t)⟩/dt = 4σ6(δ − 1)2e6p(t)(δ−1) (13)

b(t) = ⟨dB(t), dp(t)⟩/dt = 24σ8(δ − 1)3e8p(t)(δ−1) (14)

C (t) := ⟨dB(t), dB(t)⟩/dt = 576σ14(δ − 1)6e14p(t)(δ−1)(15)

c(t) := ⟨dA(t), dB(t)⟩/dt = 48σ10(δ − 1)4e10p(t)(δ−1) (16)

λ1(t) = A(t) + B(t) + C (t), λ2(t) = λ3(t) = 0
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The Constant Elasticity of Variance model
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Figure: CEV model. The first panel shows the estimated eigenvalue
λ̂1(t) (”-”) and the true eigenvalue λ1(t) (”- -”)of the CEV model. The
other panels plot the estimated eigenvalues λ̂2(t) and λ̂3(t).
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The Constant Elasticity of Variance model
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Figure: CEV model. The figure show the values of γ̂(t), β̂(t) and ρ̂(t)
for the CEV model.
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The Heston model

dp(t) =

(
α− 1

2
σ2(t)

)
dt + σ(t)dW 1

t (17)

dσ2(t) = κ(θ − σ2(t))dt + νσ(t)dW 2
t , (18)

A(t) = σ2(t), B(t) = ν2σ2(t) (19)

C (t) = ν6σ2(t) a(t) = ψνσ2(t), (20)

b(t) = ψν3σ2(t), c(t) = ν4σ2(t). (21)

λ1(t) = λ1σ
2(t), λ2(t) = λ2σ

2(t), λ3(t) = 0,

where

λ1,2 =
(1 + ν2 + ν6)±

√
(1 + ν2 + ν6)2 − 4(1− ψ2)(ν2 + ν6)

2
.
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The Heston model
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The Heston model
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Figure: The first and the second panel show the estimated eigenvalues
λ̂1(t), λ̂2(t) (”-”) and the true eigenvalues λ1(t) and λ2(t) (”- -”) of the
Heston model. The last panel plots the estimated eigenvalue λ̂3(t).
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The Heston model
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Figure: The figure shows the values of γ̂(t), β̂(t) and ρ̂(t) for the Heston
model.
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The Heston model

Table: Some statistics on γ̂(t), β̂(t) and ρ̂(t)

Min Max Mean SD

γ̂(t) 0.5582 0.9814 0.8804 0.1178

β̂(t) 0.0151 0.4418 0.1087 0.1082
ρ̂(t) 0.0000 0.0697 0.0109 0.0180
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The Stochastic Volatility of Volatility model

dp(t) =

(
α− σ2(t)

2

)
dt + σ(t)dW 1

t (22)

dσ2(t) = κ(θ − σ2(t))dt + ξ(t)dW 2
t (23)

dξ2(t) = κξ(θξ − ξ2(t))dt + νξξ(t)dW
3
t , (24)

A(t) = σ2(t), B(t) = ξ2(t), (25)

C (t) = ν2ξ ξ
2(t), a(t) = ψξ(t)σ(t) (26)

b(t) = 0, c(t) = 0. (27)

λ1(t) = ν2ξ ξ(t)
2

and

λ2,3(t) = ξ(t)2σ2(t)±
√
(ξ2(t) + σ2(t))2 − ξ2(t)σ2(t)(1− ψ2).



Introduction Model identification The Fourier estimation method Simulation study and empirical analysis

The Stochastic Volatility of Volatility model

dp(t) =

(
α− σ2(t)

2

)
dt + σ(t)dW 1

t (22)

dσ2(t) = κ(θ − σ2(t))dt + ξ(t)dW 2
t (23)

dξ2(t) = κξ(θξ − ξ2(t))dt + νξξ(t)dW
3
t , (24)

A(t) = σ2(t), B(t) = ξ2(t), (25)

C (t) = ν2ξ ξ
2(t), a(t) = ψξ(t)σ(t) (26)

b(t) = 0, c(t) = 0. (27)

λ1(t) = ν2ξ ξ(t)
2

and

λ2,3(t) = ξ(t)2σ2(t)±
√

(ξ2(t) + σ2(t))2 − ξ2(t)σ2(t)(1− ψ2).



Introduction Model identification The Fourier estimation method Simulation study and empirical analysis

The Stochastic Volatility of Volatility model
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Figure: The figure shows the values of γ̂(t), β̂(t) and ρ̂(t) for the SVV
model.
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The Stochastic Volatility of Volatility model

Table: Some statistics on γ̂(t), β̂(t) and ρ̂(t)

Min Max Mean SD

γ̂(t) 0.4607 0.9809 0.7591 0.1346

β̂(t) 0.0191 0.4608 0.2030 0.1076
ρ̂(t) 0.0000 0.2230 0.0379 0.0602
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Empirical study

We use the tick-by-tick data of the S&P 500 index futures for the
period from January 2, 2008 to December 31, 2008. Our dataset
includes the collapse of Lehman Brothers, the peak of the
global financial crisis of 2007-2008.

Cut-off frequencies: due to microstructure effects, the value for
the cutting frequency N is derived using the procedure in [Mancino
and Sanfelici, 2008]. The other frequencies are NA = (8n)1/2,
M = NA/2, MB = (16M)1/2, L = MB/2, LC = (8L)1/2, Ma = MB

and Lb = Lc = LC .

To keep these parameters large enough, we exclude days with less
than 1000 trades from our sample, leaving us with 240 days.
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and Sanfelici, 2008]. The other frequencies are NA = (8n)1/2,
M = NA/2, MB = (16M)1/2, L = MB/2, LC = (8L)1/2, Ma = MB

and Lb = Lc = LC .

To keep these parameters large enough, we exclude days with less
than 1000 trades from our sample, leaving us with 240 days.
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Table: Some statistics on γ̂(t), β̂(t), ρ̂(t). λ̂1(t), λ̂2(t) and λ̂3(t)

Min Max Mean SD

γ̂(t) 0.7171 1.0000 0.9963 0.0124

β̂(t) 0.0000 0.2819 0.0037 0.0124
ρ̂(t) 0.0000 0.0123 1.0412e-05 2.3767e-04

λ̂1(t) 1.5020e-06 0.0128 1.1871e-04 4.2712e-04

λ̂2(t) 1.8285e-06 0.0012 2.8133e-05 1.0558e-05

λ̂3(t) 0.0000 4.3946e-06 3.4117e-09 7.5914e-08
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Figure: Panels 1-3 show the values of γ̂(t), β̂(t) and ρ̂(t) for the day
January 3, 2008. Panels 4-6 show the values of γ̂(t), β̂(t) and ρ̂(t) for
the day October 10, 2008.
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Figure: Panels 1 and 3 show the log-price p(t) for the day January 3,
2008 and October, 10 2008. Panels 2 and 4 show the scree plots
corresponding to the temporal instants of day January 3, 2008 and
October, 10 2008 having, respectively, the maximum value of γ̂(t) and
β̂(t).
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