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Introduction: a financial problem

I Assume to be a financial institution who has sold a derivative contract and is
confronted with a future liability: the payoff of the derivative at the terminal time;

I We want to find the optimal hedging strategy to replicates the contingent claim;

I For incomplete markets, we have a multitude of alternative approaches, among
these, we find quadratic hedging approaches:
I Mean-variance hedging, see [Bouleau and Lamberton (1989)], [Duffie and

Richardson (1991)], [Schweizer (1994)];
I Local risk minimization, see [Föllmer and Schweizer (1991)], [Schweizer (1991)],

[Schweizer (1994)];

I In a Markovian diffusive setting, both mean-variance hedging and local risk
minimization can be solved numerically by relying on PDEs, see [Heath, Platen and
Schweizer (2001)].
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Introduction: a numerical problem
I It is well known that numerical methods for PDEs suffer from the curse of

dimensionality, hence it is problematic to apply quadratic hedging with a high
number of risk factors.

I Our strategy relies on the following two observations:
1. Both approaches can be treated from the point of view of BSDEs;
2. High dimensional BSDEs can be efficiently solved by deep learning methods, see

e.g. [E, Han and Jentzen (2017)], [Beck, E and Jentzen (2019)], [Huré, Pham and
Warin (2020)], [Horvath, Teichmann and Žurič (2021)], [Barigou and Delong
(2022)], etc.

I Our procedure consists then in:
1. Expressing both approaches by means of the associated BSDEs;
2. Applying the deep BSDE solver of [E, Han and Jentzen (2017)] to compute all the

quantities of interest in a diffusive setting of arbitrary dimension.

I We show that deep learning-based methods extend the scope of applicability of
quadratic hedging to higher dimensions.
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The market model
Let (Ω,F ,F,P) a complete probability space, with F = {Ft}t≥0 the filtration
generated by an (m + d)-dimensional Brownian motion (Wt,Bt), with Wt ∈ Rm and
Bt ∈ Rd, m ≥ 1 and d ≥ 0.

We consider a financial market with:
I One cash account

dS0
t = S0

t rtdt, S0
0 = 1; (1)

I m stocks {
dSit = Sit

(
µitdt +

∑m
j=1 σ

ij
t dW

j
t

)
Si0 = si

i = 1, . . . ,m, (2)

where r, µi, σij are F-adapted processes such that existence and uniqueness for
solutions is guaranteed.

Note: B is an additional Brownian motion entering into play, e.g., in the dynamics of
r, µ or σ: whenever d > 0, the number of Brownian motions is larger than the
number of risky assets and the market is incomplete.
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Trading strategies
We consider a trading strategy (ξ, ψ) ∈ Rm+1, where:

I ξt := (ξ1
t , . . . , ξ

m
t )>, with ξit ∈ R the number of shares of the i-th stock at time t,

I ψt the units of cash account at time t,
with associated (discounted) value process

Ṽt =
m∑
i=1

ξitS̃it + ψt, (3)

where S̃it := Sit/S0
t is the discounted stock prices and S̃0

t ≡ 1.

For a given initial wealth Ṽ0 = y, the trading strategy (ξ, ψ) is self-financing if

Ṽt = y +

∫ t

0

m∑
i=1

ξiudS̃iu (4)

(no inflows or outflows of cash).
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The hedging problem
We want to price and hedge a European contingent claim:

I Let H a square-integrable FT -measurable random variable;

I H represents an unknown payoff hence a liability at time T ;

Complete market
Ideally, the agent wants to reach the final condition

ṼT = H P-a.s. (5)

by means of a self-financing strategy (ξ, ψ).

In our setting, the market is incomplete: for some claims, it is not possible to
construct a self-financing strategy such that VT = H P-a.s. We must relax the structure
of the set of strategies.
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Approach 1: Local-risk minimization
I We insist on the fact that strategies should replicate the liability H, ṼT = H P-a.s.;
I We accept that strategies will fail to be self-financing.

From [Schweizer (2008), Proposition 5.2], the payoff H admits a local-risk minimizing
strategy (ξlr, ψlr) if and only if H admits a Föllmer-Schweizer decomposition:

Proposition
The Föllmer-Schweizer decomposition of H is given by

H = X lr0 +

∫ T

0
ηlr,>1,s

(
diag(S̃s)σs

)−1
dS̃s +

∫ T

0
ηlr,>2,s dBs, (6)

where (X lr, ηlr1 , ηlr2 ) is the unique solution to the linear BSDE

Xt = H−
∫ T

t
η>1,sdWs −

∫ T

t
η>2,sdBs −

∫ T

t
η>1,sφsds (7)

with φt := σ−1
t (µt − rtI) the market price of risk.
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Approach 2: Mean-variance hedging

I We insist on the fact that strategies should be self-financing:
I We accept a tracking error at time T .

Following the approach of [Lim (2004)], the solution of this problem can be linked to
the following system of two BSDEs:dLt =

(
|φt|2Lt + 2φ>t Λ1,t +

Λ>1,tΛ1,t
Lt

)
dt + Λ>1,tdWt + Λ>2,tdBt

LT = 1, Lt > 0
(8)

dXt =

(
φ>t η1,t −

Λ>2,tη2,t
Lt

)
dt + η>1,tdWt + η>2,tdBt

XT = H
(9)

with φt = σ−1
t (µt − rtI).
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The model: a multidimensional Heston model
Let m = d, so that W ∈ Rd and B ∈ Rd:{

dS̃t = diag(S̃t)
((
Adiag(Y2

t )µ̄
)
dt + Adiag (Yt)dWt

)
,

dY2
t = diag(κ)

(
θ − Y2

t
)
dt + diag(σ)diag (Yt)

(
diag(ρ)dWt + diag(

√
I− ρ2)dBt

)
,

(10)
where µ̄, κ, θ, σ, ρ ∈ Rd and A ∈ Rd×d.

I For m = 1 we retrieve a one-dimensional Heston model{
dS̃t = S̃t

(
µY2

t dt + YtdWt
)
,

dY2
t = κ

(
θ − Y2

t
)
dt + σYt

(
ρdWt +

√
1− ρ2dBt

)
,

(11)

with µ̄ = µ̄1 = µ and A = A11 = 1: this was proposed by [Černý and Kallsen (2008)].

I We obtain a closed-form solution for the BSRE (8)

Lt = exp
{
ϕ(t, T) + ψ(t, T)>Y2

t

}
,

where ϕ and ψ satisfy a system of Riccati ODEs, generalizing the results in
[Shen and Zeng (2015)] to the multidimensional case.

I We can then prove uniqueness by adapting the approach of
[Shen and Zeng (2015)] to our setting, see Proposition 5.3.
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The Forward-Backward SDEs
We can rewrite the problem like follows:

Xt = x +

∫ t

0
b (s,Xs)ds +

∫ t

0
a (s,Xs)> dWs, x ∈ R2d (12)

Yt = ϑ(XT) +

∫ T

t
h (s,Xs,Ys,Zs)ds−

∫ T

t
Zs>dWs, t ∈ [0, T ], (13)

where
I W = (W ,B)> ∈ R2d;
I The forward process is X = (S̃, Y2)> ∈ R2d;
I The control process is Z = (Z1,Z2)> with Z1,Z2 ∈ Rd;
I The backward process Y is given by the BSDE that the quadratic hedging

approach requires to solve.

The stochastic control problem
A solution (Y,Z) to (13) is a minimiser of

min
y=Y0, Z=(Zt)t∈[0,T]

E
[
|ϑ(XT)− YT |2

]
. (14)
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The Deep BSDE solver
The idea of the Deep BSDE solver of [E, Han and Jentzen (2017)] is to numerically
solve a discretized version of (14). Then, at each time step n, the control process
Z is approximated by an artificial neural network (ANN).

I For N ∈ N, we introduce a grid 0 = t0 < t1 < . . . < tN = T with step ∆t s.t. tn = n∆t;
I Let ∆Wn =Wtn+1 −Wtn .

We consider an Euler-Maruyama discretization of (12)-(13), and introduce for each n,
an ANN Nn : R2d → R2d. We get:

Xn+1 = Xn + b(tn,Xn)∆t + a(tn,Xn)>∆Wn, X0 = x, (15)
Ŷn+1 = Ŷn − h(tn,Xn, Ŷn,Nn)∆t +Nn

>∆Wn, Ŷ0 = y. (16)

If now P((Nn)N−1
n=1 ) denotes the set of parameters (i.e. weights and biases) of all the

ANNs, then the stochastic control problem (14) becomes

min
y, P((Nn)N−1

n=1 )
E
[∣∣∣ϑ(XN)− ŶN

∣∣∣2]. (17)
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Benchmarks

I One-dimension: we compare the price process and the hedging strategies with the
semi-explicit solutions

• Local-risk minimization: [Heath et al. (2001)];

• Mean-variance hedging: [Černý and Kallsen (2008)];

I Multi-dimension: we can only compare the price at time 0 by Monte Carlo for the
process X = (S̃, Y2)>.
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Local risk minimization
Portfolio dimension: 1 MC price: 6.854

Time steps 10 50 100
BSDE solver price 6.829 6.846 6.855
Relative error (%) 0.360 0.120 0.0162
Training time (s) 128 735 1546

PDE price 6.850 6.850 6.850
Relative error (%) 0.0488 0.0613 0.0618

Portfolio dimension: 20 MC price: 30.761
Time steps 10 50 100

BSDE solver price 30.704 30.783 30.828
Relative error (%) 1.322 0.568 0.218
Training time (s) 418 1993 3660

Portfolio dimension: 100 MC price: 68.950
Time steps 10 50 100

BSDE solver price 68.269 68.427 69.020
Relative error (%) 0.988 0.758 0.101
Training time (s) 1772 9096 16527
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Local risk minimization: d = 1, N = 10
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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Local risk minimization: d = 1, N = 50
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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Local risk minimization: d = 1, N = 100
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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MSE local risk minimization: d = 1
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Figure: Above: shares of risky asset (left) and units of cash account (right); below: option price.
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Mean-variance hedging
Portfolio dimension: 1 MC price: 6.837

L value: 0.99984
Time steps 10 50 100

BSDE solver L value 0.99969 0.99970 0.99969
Relative error (%) 0.01476 0.01434 0.01493

1st training time (s) 82 576 1048
BSDE solver price 6.830 6.854 6.838
Relative error (%) 0.105 0.246 0.0250

2nd training time (s) 1015 3270 5785
PDE price 6.853 6.853 6.853

Relative error (%) 0.245 0.233 0.232

Portfolio dimension: 100 MC price: 68.831
L value: 0.97002

Time steps 10 50 100
BSDE solver L value 0.97044 0.97007 0.97024
Relative error (%) 0.02936 0.00489 0.0230

1st training time (s) 1757 9860 20917
BSDE solver price 68.168 68.892 68.910
Relative error (%) 0.964 0.0878 0.114

2nd training time (s) 4516 21843 40253
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Mean-variance hedging: d = 1, N = 10
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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Mean-variance hedging: d = 1, N = 50
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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Mean-variance hedging: d = 1, N = 100

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

es
 of

 ri
sk

y a
ss

et

0.0 0.2 0.4 0.6 0.8 1.0
Time

1.0

0.8

0.6

0.4

0.2

0.0

Un
its

 of
 ca

sh
 ac

co
un

t

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

5

10

15

20

25

30

35

Ca
ll o

pt
ion

 pr
ice

Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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MSE Mean-variance hedging: d = 1
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Figure: Above: shares of risky asset (left) and units of cash account (right); below: option price.
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A note on the solver
I Initially, we assumed that the coefficients are F-adapted, while

[E, Han and Jentzen (2017)] works under the assumption of Markovianity: due to
our modelling choice, it is natural for us to apply a Markovian solver;

I For non-Markovian model, such as the rough Heston model in [El Euch and
Rosenbaum (2019)] and the rough-Bergomi model of [Bayer, Friz and Gatheral
(2019)], the valuation equations take the form of BSPDEs which can be numerically
solved by suitable extensions of the original solver of [E, Han and Jentzen (2017)],
see e.g. [Bayer, Qiu and Yao (2022)], [ Jacquier and Oumgari (2023)].

I The concrete mathematical structure of the model of choice will determine a
certain variation of the reasoning we propose.

I Other deep learning-based solvers for BSDEs (or associated PDEs) in the Markovian
setting can be found in the literature, see e.g. [Huré, Pham and Warin (2020)],
[Beck et al. (2021)].

I We don’t exclude that other solvers could be also used in the same context.
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Černý, A., and Kallsen, J. (2008). Mean–variance hedging and optimal investment in Heston’s model
with correlation. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial
Economics, 18(3), 473-492.

Delong, L. (2017). Backward Stochastic Differential Equations with Jumps and Their Actuarial and
Financial Applications. Springer,

Heath, D., Platen, E., and Schweizer, M. (2001). Numerical comparison of local risk-minimisation and
mean-variance hedging. Option pricing, interest rates and risk management, 509-537.

Schweizer, M. (2008). Local risk minimization for multidimensional assets and payment streams.
Banach Cent. Publ., 83, 213-229.

E, W., Han, J., and Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations.
Communications in Mathematics and Statistics, 5(4), 349-380.

Shen, Y. and Zeng, Y. (2015). Optimal investment–reinsurance strategy for mean–variance insurers
with square-root factor process. Insurance: Mathematics and Economics, 62, 118-137.

Thanks for the attention!


	Hedging in incomplete markets
	The market model
	Local-risk minimization
	Mean-variance hedging
	The stochastic model

	The Deep BSDE solver
	Numerical experiments

