Deep Quadratic Hedging

Joint work with Alessandro Gnoatto and Athena Picarelli (University of Verona)

Silvia Lavagnini

BI Norwegian Business School

ICCF24 – Amsterdam April 2, 2024

Introduction: a financial problem

- Assume to be a financial institution who has sold a derivative contract and is confronted with a future liability: the payoff of the derivative at the terminal time;
- ▶ We want to find the optimal hedging strategy to replicates the contingent claim;
- ► For incomplete markets, we have a multitude of alternative approaches, among these, we find quadratic hedging approaches:
 - Mean-variance hedging, see [Bouleau and Lamberton (1989)], [Duffie and Richardson (1991)], [Schweizer (1994)];
 - Local risk minimization, see [Föllmer and Schweizer (1991)], [Schweizer (1991)], [Schweizer (1994)];
- In a Markovian diffusive setting, both mean-variance hedging and local risk minimization can be solved numerically by relying on PDEs, see [Heath, Platen and Schweizer (2001)].

Introduction: a numerical problem

- ► It is well known that numerical methods for PDEs suffer from the curse of dimensionality, hence it is problematic to apply quadratic hedging with a high number of risk factors.
- ► Our strategy relies on the following two observations:
 - 1. Both approaches can be treated from the point of view of BSDEs;
 - 2. High dimensional BSDEs can be efficiently solved by deep learning methods, see e.g. [E, Han and Jentzen (2017)], [Beck, E and Jentzen (2019)], [Huré, Pham and Warin (2020)], [Horvath, Teichmann and Žurič (2021)], [Barigou and Delong (2022)], etc.
- ► Our procedure consists then in:
 - 1. Expressing both approaches by means of the associated BSDEs;
 - 2. Applying the deep BSDE solver of [E, Han and Jentzen (2017)] to compute all the quantities of interest in a diffusive setting of arbitrary dimension.
- ► We show that deep learning-based methods extend the scope of applicability of quadratic hedging to higher dimensions.

Outline

Hedging in incomplete markets The market model Local-risk minimization Mean-variance hedging The stochastic model

The Deep BSDE solver

Numerical experiments

Outline

Hedging in incomplete markets The market model Local-risk minimization Mean-variance hedging The stochastic model

The Deep BSDE solver

Numerical experiments

The market model

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ a complete probability space, with $\mathbb{F} = \{\mathcal{F}_t\}_{t \ge 0}$ the **filtration** generated by an (m + d)-dimensional Brownian motion (W_t, B_t) , with $W_t \in \mathbb{R}^m$ and $B_t \in \mathbb{R}^d$, $m \ge 1$ and $d \ge 0$.

We consider a financial market with:

One cash account

$$dS_t^0 = S_t^0 r_t dt, \quad S_0^0 = 1;$$
(1)

▶ m stocks

$$\begin{cases} \mathrm{d}S_t^i = S_t^i \left(\mu_t^j \mathrm{d}t + \sum_{j=1}^m \sigma_t^{ij} \mathrm{d}W_t^j \right) & i = 1, \dots, m, \end{cases}$$
(2)

where r, μ^i , σ^{ij} are **F**-adapted processes such that existence and uniqueness for solutions is guaranteed.

Note: *B* is an additional Brownian motion entering into play, e.g., in the dynamics of r, μ or σ : whenever d > 0, the number of Brownian motions is larger than the number of risky assets and the market is incomplete.

Trading strategies

We consider a **trading strategy** $(\xi, \psi) \in \mathbb{R}^{m+1}$, where:

- ▶ $\xi_t := (\xi_t^1, ..., \xi_t^m)^\top$, with $\xi_t^i \in \mathbb{R}$ the number of shares of the *i*-th stock at time *t*,
- ► ψ_t the **units of cash account** at time *t*, with associated (discounted) **value process**

$$\tilde{\chi}_t = \sum_{i=1}^m \xi_t^i \tilde{S}_t^i + \psi_t, \tag{3}$$

where $\tilde{S}_t^i := S_t^i / S_t^0$ is the **discounted stock prices** and $\tilde{S}_t^0 \equiv 1$.

Trading strategies

We consider a **trading strategy** $(\xi, \psi) \in \mathbb{R}^{m+1}$, where:

- ▶ $\xi_t := (\xi_t^1, ..., \xi_t^m)^\top$, with $\xi_t^i \in \mathbb{R}$ the number of shares of the *i*-th stock at time *t*,
- ▶ ψ_t the **units of cash account** at time *t*, with associated (discounted) **value process**

$$\tilde{V}_t = \sum_{i=1}^m \xi_t^i \tilde{S}_t^i + \psi_t, \tag{3}$$

where $\tilde{S}_t^i := S_t^i / S_t^0$ is the **discounted stock prices** and $\tilde{S}_t^0 \equiv 1$. For a given initial wealth $\tilde{V}_0 = y$, the trading strategy (ξ, ψ) is **self-financing** if

$$\tilde{V}_t = y + \int_0^t \sum_{i=1}^m \xi_u^i \mathrm{d}\tilde{S}_u^i \tag{4}$$

(no inflows or outflows of cash).

The hedging problem

We want to price and hedge a European contingent claim:

- ▶ Let *H* a square-integrable \mathcal{F}_T -measurable random variable;
- ► *H* represents an unknown payoff hence a liability at time *T*;

The hedging problem

We want to price and hedge a European contingent claim:

- Let *H* a square-integrable \mathcal{F}_T -measurable random variable;
- ▶ *H* represents an unknown payoff hence a liability at time *T*;

Complete market

Ideally, the agent wants to reach the final condition

$$\tilde{V}_T = H \quad \mathbb{P} ext{-a.s.}$$
 (5)

by means of a self-financing strategy (ξ, ψ) .

The hedging problem

We want to price and hedge a European contingent claim:

- Let *H* a square-integrable \mathcal{F}_T -measurable random variable;
- ► *H* represents an unknown payoff hence a liability at time *T*;

Complete market

Ideally, the agent wants to reach the final condition

$$\tilde{V}_T = H \quad \mathbb{P} ext{-a.s.}$$
 (5)

by means of a self-financing strategy (ξ, ψ) .

In our setting, **the market is incomplete**: for some claims, it is not possible to construct a self-financing strategy such that $V_T = H \mathbb{P}$ -a.s. We must relax the structure of the set of strategies.

Approach 1: Local-risk minimization

- We insist on the fact that strategies should replicate the liability H, $\tilde{V}_T = H \mathbb{P}$ -a.s.;
- ▶ We accept that strategies will fail to be self-financing.

Approach 1: Local-risk minimization

- We insist on the fact that strategies should replicate the liability H, $\tilde{V}_T = H \mathbb{P}$ -a.s.;
- ▶ We accept that strategies will fail to be self-financing.

From [Schweizer (2008), Proposition 5.2], the payoff *H* admits a local-risk minimizing strategy (ξ^{lr} , ψ^{lr}) if and only if *H* admits a **Föllmer-Schweizer decomposition**:

Approach 1: Local-risk minimization

- We insist on the fact that strategies should replicate the liability H, $\tilde{V}_T = H \mathbb{P}$ -a.s.;
- ▶ We accept that strategies will fail to be self-financing.

From [Schweizer (2008), Proposition 5.2], the payoff *H* admits a local-risk minimizing strategy (ξ^{lr} , ψ^{lr}) if and only if *H* admits a **Föllmer-Schweizer decomposition**:

Proposition

The Föllmer-Schweizer decomposition of H is given by

$$H = X_0^{lr} + \int_0^T \eta_{1,s}^{lr,\top} \left(\operatorname{diag}(\tilde{S}_s) \sigma_s \right)^{-1} \mathrm{d}\tilde{S}_s + \int_0^T \eta_{2,s}^{lr,\top} \mathrm{d}B_s,$$
(6)

where $(X^{lr}, \eta_1^{lr}, \eta_2^{lr})$ is the unique solution to the linear BSDE

$$X_t = H - \int_t^T \eta_{1,s}^\top dW_s - \int_t^T \eta_{2,s}^\top dB_s - \int_t^T \eta_{1,s}^\top \phi_s ds$$
(7)

with $\phi_t := \sigma_t^{-1}(\mu_t - r_t \mathbb{I})$ the market price of risk.

Approach 2: Mean-variance hedging

- ► We insist on the fact that strategies should be self-financing:
- ▶ We accept a tracking error at time *T*.

Following the approach of [Lim (2004)], the solution of this problem can be linked to the following system of two BSDEs:

$$\begin{cases} dL_t = \left(|\phi_t|^2 L_t + 2\phi_t^\top \Lambda_{1,t} + \frac{\Lambda_{1,t}^\top \Lambda_{1,t}}{L_t} \right) dt + \Lambda_{1,t}^\top dW_t + \Lambda_{2,t}^\top dB_t \\ L_T = 1, \ L_t > 0 \\ \begin{cases} dX_t = \left(\phi_t^\top \eta_{1,t} - \frac{\Lambda_{2,t}^\top \eta_{2,t}}{L_t} \right) dt + \eta_{1,t}^\top dW_t + \eta_{2,t}^\top dB_t \\ X_T = H \end{cases}$$
(8)

with $\phi_t = \sigma_t^{-1}(\mu_t - r_t \mathbb{I}).$

The model: a multidimensional Heston model Let m = d, so that $W \in \mathbb{R}^d$ and $B \in \mathbb{R}^d$:

 $\begin{cases} d\tilde{S}_t = \operatorname{diag}(\tilde{S}_t) \left(\left(A \operatorname{diag}(Y_t^2) \bar{\mu} \right) dt + A \operatorname{diag}(Y_t) dW_t \right), \\ dY_t^2 = \operatorname{diag}(\kappa) \left(\theta - Y_t^2 \right) dt + \operatorname{diag}(\sigma) \operatorname{diag}(Y_t) \left(\operatorname{diag}(\rho) dW_t + \operatorname{diag}(\sqrt{\mathbb{I} - \rho^2}) dB_t \right), \end{cases}$ (10)

where $\bar{\mu}, \kappa, \theta, \sigma, \rho \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$.

The model: a multidimensional Heston model Let m = d, so that $W \in \mathbb{R}^d$ and $B \in \mathbb{R}^d$:

 $\begin{cases} d\tilde{S}_t = \operatorname{diag}(\tilde{S}_t) \left(\left(A \operatorname{diag}(Y_t^2) \bar{\mu} \right) dt + A \operatorname{diag}(Y_t) dW_t \right), \\ dY_t^2 = \operatorname{diag}(\kappa) \left(\theta - Y_t^2 \right) dt + \operatorname{diag}(\sigma) \operatorname{diag}(Y_t) \left(\operatorname{diag}(\rho) dW_t + \operatorname{diag}(\sqrt{\mathbb{I} - \rho^2}) dB_t \right), \end{cases}$

where $\bar{\mu}, \kappa, \theta, \sigma, \rho \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$.

For m = 1 we retrieve a one-dimensional Heston model

$$\begin{cases} d\tilde{S}_t = \tilde{S}_t \left(\mu Y_t^2 dt + Y_t dW_t \right), \\ dY_t^2 = \kappa \left(\theta - Y_t^2 \right) dt + \sigma Y_t \left(\rho dW_t + \sqrt{1 - \rho^2} dB_t \right), \end{cases}$$
(11)

with $\bar{\mu} = \bar{\mu}_1 = \mu$ and $A = A_{11} = 1$: this was proposed by [Černý and Kallsen (2008)].

BI

(10)

The model: a multidimensional Heston model Let m = d, so that $W \in \mathbb{R}^d$ and $B \in \mathbb{R}^d$:

 $\begin{cases} d\tilde{S}_t = \operatorname{diag}(\tilde{S}_t) \left(\left(A \operatorname{diag}(Y_t^2) \bar{\mu} \right) dt + A \operatorname{diag}(Y_t) dW_t \right), \\ dY_t^2 = \operatorname{diag}(\kappa) \left(\theta - Y_t^2 \right) dt + \operatorname{diag}(\sigma) \operatorname{diag}(Y_t) \left(\operatorname{diag}(\rho) dW_t + \operatorname{diag}(\sqrt{\mathbb{I} - \rho^2}) dB_t \right), \end{cases}$

where $\bar{\mu}, \kappa, \theta, \sigma, \rho \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$.

• For m = 1 we retrieve a one-dimensional Heston model

$$\begin{cases} d\tilde{S}_t = \tilde{S}_t \left(\mu Y_t^2 dt + Y_t dW_t \right), \\ dY_t^2 = \kappa \left(\theta - Y_t^2 \right) dt + \sigma Y_t \left(\rho dW_t + \sqrt{1 - \rho^2} dB_t \right), \end{cases}$$
(11)

with $\bar{\mu} = \bar{\mu}_1 = \mu$ and $A = A_{11} = 1$: this was proposed by [Černý and Kallsen (2008)]. • We obtain a closed-form solution for the BSRE (8)

$$L_t = \exp\left\{\varphi(t,T) + \psi(t,T)^{\top}Y_t^2\right\},\,$$

where φ and ψ satisfy a system of Riccati ODEs, generalizing the results in [Shen and Zeng (2015)] to the multidimensional case.

We can then prove uniqueness by adapting the approach of [Shen and Zeng (2015)] to our setting, see Proposition 5.3. (10)

Outline

Hedging in incomplete markets The market model Local-risk minimization Mean-variance hedging The stochastic model

The Deep BSDE solver

Numerical experiments

The Forward-Backward SDEs

We can rewrite the problem like follows:

$$\mathcal{X}_{t} = \mathbf{x} + \int_{0}^{t} \mathbf{b}(\mathbf{s}, \mathcal{X}_{s}) \,\mathrm{d}\mathbf{s} + \int_{0}^{t} \mathbf{a}(\mathbf{s}, \mathcal{X}_{s})^{\top} \,\mathrm{d}\mathcal{W}_{s}, \quad \mathbf{x} \in \mathbb{R}^{2d}$$
(12)

$$\mathcal{Y}_{t} = \vartheta(\mathcal{X}_{T}) + \int_{t}^{T} h(s, \mathcal{X}_{s}, \mathcal{Y}_{s}, \mathcal{Z}_{s}) ds - \int_{t}^{T} \mathcal{Z}_{s}^{\top} d\mathcal{W}_{s}, \quad t \in [0, T],$$
(13)

where

- $\blacktriangleright \ \mathcal{W} = (\mathcal{W}, \mathcal{B})^\top \in \mathbb{R}^{2d};$
- ► The forward process is $\mathcal{X} = (\tilde{S}, Y^2)^\top \in \mathbb{R}^{2d}$;
- ▶ The control process is $Z = (Z^1, Z^2)^\top$ with $Z^1, Z^2 \in \mathbb{R}^d$;
- ► The **backward process** \mathcal{Y} is given by the BSDE that the quadratic hedging approach requires to solve.

The Forward-Backward SDEs

We can rewrite the problem like follows:

$$\mathcal{X}_{t} = \mathbf{x} + \int_{0}^{t} \mathbf{b}(\mathbf{s}, \mathcal{X}_{s}) \,\mathrm{d}\mathbf{s} + \int_{0}^{t} \mathbf{a}(\mathbf{s}, \mathcal{X}_{s})^{\top} \,\mathrm{d}\mathcal{W}_{s}, \quad \mathbf{x} \in \mathbb{R}^{2d}$$
(12)

$$\mathcal{Y}_{t} = \vartheta(\mathcal{X}_{T}) + \int_{t}^{T} h(s, \mathcal{X}_{s}, \mathcal{Y}_{s}, \mathcal{Z}_{s}) ds - \int_{t}^{T} \mathcal{Z}_{s}^{\top} d\mathcal{W}_{s}, \quad t \in [0, T],$$
(13)

where

- ► $W = (W, B)^{\top} \in \mathbb{R}^{2d};$
- ► The forward process is $\mathcal{X} = (\tilde{S}, Y^2)^\top \in \mathbb{R}^{2d}$;
- ▶ The control process is $Z = (Z^1, Z^2)^\top$ with $Z^1, Z^2 \in \mathbb{R}^d$;
- ► The **backward process** \mathcal{Y} is given by the BSDE that the quadratic hedging approach requires to solve.

The stochastic control problem

A solution $(\mathcal{Y}, \mathcal{Z})$ to (13) is a minimiser of

$$\min_{\boldsymbol{\mathcal{Y}}=\mathcal{Y}_0, \ \mathcal{Z}=(\mathcal{Z}_t)_{t\in[0,T]}} \mathbb{E}\left[|\vartheta(\mathcal{X}_T) - \mathcal{Y}_T|^2 \right].$$
(14)

The Deep BSDE solver

The idea of the Deep BSDE solver of [E, Han and Jentzen (2017)] is to numerically solve a discretized version of (14). Then, at each time step n, the control process \mathcal{Z} is approximated by an artificial neural network (ANN).

The Deep BSDE solver

The idea of the Deep BSDE solver of [E, Han and Jentzen (2017)] is to numerically solve a discretized version of (14). Then, at each time step n, the control process \mathcal{Z} is approximated by an artificial neural network (ANN).

▶ For $N \in \mathbb{N}$, we introduce a grid $0 = t_0 < t_1 < \ldots < t_N = T$ with step Δt s.t. $t_n = n\Delta t$;

• Let
$$\Delta W_n = W_{t_{n+1}} - W_{t_n}$$
.

We consider an Euler-Maruyama discretization of (12)-(13), and introduce for each n, an ANN $\mathcal{N}_n : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$. We get:

$$\mathcal{X}_{n+1} = \mathcal{X}_n + b(t_n, \mathcal{X}_n) \Delta t + a(t_n, \mathcal{X}_n)^\top \Delta \mathcal{W}_n, \qquad \qquad \mathcal{X}_0 = x, \qquad (15)$$

$$\hat{\mathcal{Y}}_{n+1} = \hat{\mathcal{Y}}_n - h(t_n, \mathcal{X}_n, \hat{\mathcal{Y}}_n, \mathcal{N}_n) \Delta t + \mathcal{N}_n^{\top} \Delta \mathcal{W}_n, \qquad \hat{\mathcal{Y}}_0 = \mathbf{y}.$$
 (16)

The Deep BSDE solver

The idea of the Deep BSDE solver of [E, Han and Jentzen (2017)] is to numerically solve a discretized version of (14). Then, at each time step n, the control process \mathcal{Z} is approximated by an artificial neural network (ANN).

▶ For $N \in \mathbb{N}$, we introduce a grid $0 = t_0 < t_1 < \ldots < t_N = T$ with step Δt s.t. $t_n = n\Delta t$;

• Let
$$\Delta W_n = W_{t_{n+1}} - W_{t_n}$$
.

We consider an Euler-Maruyama discretization of (12)-(13), and introduce for each n, an ANN $\mathcal{N}_n : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$. We get:

$$\mathcal{X}_{n+1} = \mathcal{X}_n + b(t_n, \mathcal{X}_n) \Delta t + a(t_n, \mathcal{X}_n)^\top \Delta \mathcal{W}_n, \qquad \qquad \mathcal{X}_0 = x, \qquad (15)$$

$$\hat{\mathcal{Y}}_{n+1} = \hat{\mathcal{Y}}_n - h(t_n, \mathcal{X}_n, \hat{\mathcal{Y}}_n, \mathcal{N}_n) \Delta t + \mathcal{N}_n^{\top} \Delta \mathcal{W}_n, \qquad \qquad \hat{\mathcal{Y}}_0 = \mathbf{y}.$$
(16)

If now $\mathcal{P}((\mathcal{N}_n)_{n=1}^{N-1})$ denotes the set of parameters (i.e. weights and biases) of all the ANNs, then the stochastic control problem (14) becomes

$$\min_{\boldsymbol{y}, \ \mathcal{P}((\mathcal{N}_n)_{n=1}^{N-1})} \mathbb{E}\left[\left|\vartheta(\mathcal{X}_N) - \hat{\mathcal{Y}}_N\right|^2\right].$$
(17)

Outline

Hedging in incomplete markets The market model Local-risk minimization Mean-variance hedging The stochastic model

The Deep BSDE solver

Numerical experiments

- One-dimension: we compare the price process and the hedging strategies with the semi-explicit solutions
 - Local-risk minimization: [Heath et al. (2001)];
 - Mean-variance hedging: [Černý and Kallsen (2008)];
- ► Multi-dimension: we can only compare the price at time 0 by Monte Carlo for the process $\mathcal{X} = (\tilde{S}, Y^2)^{\top}$.

Local risk minimization

Portfolio dimension: 1	MC price: 6.854			
Time steps	10	50	100	
BSDE solver price	6.829	6.846	6.855	
Relative error (%)	0.360	0.120	0.0162	
Training time (s)	128	735	1546	
PDE price	6.850	6.850	6.850	
Relative error (%)	0.0488	0.0613	0.0618	
Portfolio dimension: 20	MC price: 30.761			
Time steps	10	50	100	
BSDE solver price	30.704	30.783	30.828	
Relative error (%)	1.322	0.568	0.218	
Training time (s)	418	1993	3660	
Portfolio dimension: 100	MC price: 68.950			
Time steps	10	50	100	
BSDE solver price	68.269	68.427	69.020	
Relative error (%)	0.988	0.758	0.101	
Training time (s)	1772	9096	16527	

Local risk minimization: d = 1, N = 10

Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

Local risk minimization: d = 1, N = 50

Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

Local risk minimization: d = 1, N = 100

of risky

Shar

Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

MSE local risk minimization: d = 1

Figure: Above: shares of risky asset (left) and units of cash account (right); below: option price.

Mean-variance hedging

Portfolio dimension: 1	MC price: <i>L</i> value:		6.837 0.99984
Time steps	10	50	100
BSDE solver <i>L</i> value	0.99969	0.99970	0.99969
Relative error (%)	0.01476	0.01434	0.01493
1st training time (s)	82	576	1048
BSDE solver price	6.830	6.854	6.838
Relative error (%)	0.105	0.246	0.0250
2nd training time (s)	1015	3270	5785
PDE price	6.853	6.853	6.853
Relative error (%)	0.245	0.233	0.232
Portfolio dimension: 100	MC price: <i>L</i> value:		68.831 0.97002
Time steps	10	50	100
BSDE solver <i>L</i> value	0.97044	0.97007	0.97024
Relative error (%)	0.02936	0.00489	0.0230
1st training time (s)	1757	9860	20917
BSDE solver price	68.168	68.892	68.910
Relative error (%)	0.964	0.0878	0.114
2nd training time (s)	4516	21843	40253

Mean-variance hedging: d = 1, N = 10

Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

Mean-variance hedging: d = 1, N = 50

Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

Mean-variance hedging: d = 1, N = 100

Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

MSE Mean-variance hedging: d = 1

Figure: Above: shares of risky asset (left) and units of cash account (right); below: option price.

A note on the solver

- ► Initially, we assumed that the coefficients are F-adapted, while [E, Han and Jentzen (2017)] works under the assumption of Markovianity: due to our modelling choice, it is natural for us to apply a Markovian solver;
- ► For non-Markovian model, such as the rough Heston model in [El Euch and Rosenbaum (2019)] and the rough-Bergomi model of [Bayer, Friz and Gatheral (2019)], the valuation equations take the form of BSPDEs which can be numerically solved by suitable extensions of the original solver of [E, Han and Jentzen (2017)], see e.g. [Bayer, Qiu and Yao (2022)], [Jacquier and Oumgari (2023)].
- The concrete mathematical structure of the model of choice will determine a certain variation of the reasoning we propose.
- Other deep learning-based solvers for BSDEs (or associated PDEs) in the Markovian setting can be found in the literature, see e.g. [Huré, Pham and Warin (2020)], [Beck et al. (2021)].
- ► We don't exclude that other solvers could be also used in the same context.

References

- BI
- Lim, A. E. (2004). Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market. *Mathematics of Operations Research*, 29(1), 132-161.
- Černý, A., and Kallsen, J. (2008). Mean–variance hedging and optimal investment in Heston's model with correlation. *Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics*, 18(3), 473-492.
- Delong, L. (2017). Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. *Springer*,
- Heath, D., Platen, E., and Schweizer, M. (2001). *Numerical comparison of local risk-minimisation and mean-variance hedging*. Option pricing, interest rates and risk management, 509-537.
- Schweizer, M. (2008). Local risk minimization for multidimensional assets and payment streams. *Banach Cent. Publ.*, 83, 213-229.
- **E**, W., Han, J., and Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. *Communications in Mathematics and Statistics*, 5(4), 349-380.
 - Shen, Y. and Zeng, Y. (2015). Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process. *Insurance: Mathematics and Economics*, 62, 118-137.

References

- BI
- Lim, A. E. (2004). Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market. *Mathematics of Operations Research*, 29(1), 132-161.
- Černý, A., and Kallsen, J. (2008). Mean–variance hedging and optimal investment in Heston's model with correlation. *Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics*, 18(3), 473-492.
- Delong, L. (2017). Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. *Springer*,
- Heath, D., Platen, E., and Schweizer, M. (2001). *Numerical comparison of local risk-minimisation and mean-variance hedging*. Option pricing, interest rates and risk management, 509-537.
- Schweizer, M. (2008). Local risk minimization for multidimensional assets and payment streams. *Banach Cent. Publ.*, 83, 213-229.
- **E**, W., Han, J., and Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. *Communications in Mathematics and Statistics*, 5(4), 349-380.
 - Shen, Y. and Zeng, Y. (2015). Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process. *Insurance: Mathematics and Economics*, 62, 118-137.

Thanks for the attention!