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Introduction: a financial problem |51

» Assume to be a financial institution who has sold a derivative contract and is
confronted with a future liability: the payoff of the derivative at the terminal time;

» We want to find the optimal hedging strategy to replicates the contingent claim;

» For incomplete markets, we have a multitude of alternative approaches, among

these, we find quadratic hedging approaches:
» Mean-variance hedging, see [Bouleau and Lamberton (1989)], [Duffie and

Richardson (1991)], [Schweizer (1994)];
» Local risk minimization, see [Follmer and Schweizer (1991)], [Schweizer (1991)],

[Schweizer (1994)];

» In a Markovian diffusive setting, both mean-variance hedging and local risk
minimization can be solved numerically by relying on PDEs, see [Heath, Platen and

Schweizer (2001)].

2/28



Introduction: a numerical problem |51

» It is well known that numerical methods for PDEs suffer from the curse of
dimensionality, hence it is problematic to apply quadratic hedging with a high
number of risk factors.

» Our strategy relies on the following two observations:

1. Both approaches can be treated from the point of view of BSDEs;

2. High dimensional BSDEs can be efficiently solved by deep learning methods, see
e.g. [E, Han and Jentzen (2017)], [Beck, E and Jentzen (2019)], [Huré, Pham and
Warin (2020)], [Horvath, Teichmann and Zuri¢ (2021)], [Barigou and Delong
(2022)], etc.

» Our procedure consists then in:
1. Expressing both approaches by means of the associated BSDEs;
2. Applying the deep BSDE solver of [E, Han and Jentzen (2017)] to compute all the
quantities of interest in a diffusive setting of arbitrary dimension.

» We show that deep learning-based methods extend the scope of applicability of
quadratic hedging to higher dimensions.
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The market model |51

Let (Q, F,F,P) a complete probability space, with ' = {F;}+>¢ the filtration
generated by an (m + d)-dimensional Brownian motion (W;, B;), with W; € R™ and

BieRY m>1andd > 0.
We consider a financial market with:
» One cash account
ds? = SPrdt, S5 =1; (1)
» m stocks o
{d%—Sé (,u’tdt—i—zer U?dW{) i=1...m 2
56 =S
where r, i/, o/ are F-adapted processes such that existence and uniqueness for
solutions is guaranteed.
Note: B is an additional Brownian motion entering into play, e.g., in the dynamics of

r, uwor o: whenever d > 0, the number of Brownian motions is larger than the
number of risky assets and the market is incomplete.
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Trading strategies |51
We consider a trading strategy (¢, 1)) € R™*", where:

> &= (&,...,&MT, with ¢ € R the number of shares of the i-th stock at time t,

» ¢ the units of cash account at time ¢,
with associated (discounted) value process

m
Ve="> &5+, (3)
i=1

where S := 5//50 is the discounted stock prices and 50 = 1.
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Trading strategies |BI|
We consider a trading strategy (¢, ) € R™', where:

> &= (&,...,&MT, with ¢ € R the number of shares of the i-th stock at time t,

» ¢ the units of cash account at time ¢,
with associated (discounted) value process

m
Ve =" &5t + v, (3)
i=1
where S := 5//50 is the discounted stock prices and 50 = 1.
For a given initial wealth ¥/, = y, the trading strategy (¢, ¢) is self-financing if
(4)

t m
vt=y+/ S €,
0 =

(no inflows or outflows of cash).
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The hedging problem |5t

We want to price and hedge a European contingent claim:
» Let H a square-integrable Fr-measurable random variable;

» Hrepresents an unknown payoff hence a liability at time T;
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The hedging problem |5t

We want to price and hedge a European contingent claim:
» Let H a square-integrable Fr-measurable random variable;

» Hrepresents an unknown payoff hence a liability at time T;
Complete market
Ideally, the agent wants to reach the final condition
Vr =H P-as. (5)
by means of a self-financing strategy (¢, ¢).

In our setting, the market is incomplete: for some claims, it is not possible to
construct a self-financing strategy such that Vy = H P-a.s. We must relax the structure
of the set of strategies.
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Approach 1: Local-risk minimization |51
» We insist on the fact that strategies should replicate the liability H, ¥ = H P-a.s;
» We accept that strategies will fail to be self-financing.
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Approach 1: Local-risk minimization lm'
» We insist on the fact that strategies should replicate the liability H, ¥ = H P-a.s;
» We accept that strategies will fail to be self-financing.

From [Schweizer (2008), Proposition 5.2], the payoff H admits a local-risk minimizing
strategy (¢, 4') if and only if H admits a Féllmer-Schweizer decomposition:

Proposition
The Féllmer-Schweizer decomposition of H is given by

T - —1 T
H=X{ + / iy (dieg(Ss)os)  dSs+ / ny, dBs, (6)
0 0
where (X' 1l nlr) is the unique solution to the linear BSDE

T T T
X —H- / . / nddB; - / 0 ssds @)
Jt Jt Jt

with ¢¢ := o (ut — rel) the market price of risk.
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Approach 2: Mean-variance hedging |51

» We insist on the fact that strategies should be self-financing:
» We accept a tracking error at time 7.

Following the approach of [Lim (2004)], the solution of this problem can be linked to
the following system of two BSDEs:

{st _ <|¢t|2Lt + 2¢ A o+ A, t/\'l z) dt + /\1T-,det + /\;tdBt 8)

LT:1,Lt>O

{dxr _ (@5? e — ) dt + 7 AW, + 1] dB, o

Xr=H

with ¢¢ = o7 ! (e — rel).
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The model: a multidimensional Heston model [31]
Letm = d, so that W € RY and B € RY:

dS, = diag(Se) ((Adiag(Y?)a) dt + Adiag (Ye) dW;) ,
dy? = diag(x) (0 — ¥2) dt + diag(o)diag (¥;) (diag(p)th + diag(y/I— pz)dBr> ,

where i, s, 0, o, p € R and A € RY%9,
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The model: a multidimensional Heston model lBIl

Let m = d, so that W € R? and B € R?:
dS, = diag(Se) ((Adiag(Y?)a) dt + Adiag (Ye) dW;) ,
dy? = diag(x) (0 — ¥2) dt + diag(o)diag (¥;) (diag(p)th + diag(y/I— pz)dBt> ,
(10)
where ji, %, 0, o, p € R? and A € R9*9,
» For m = 1 we retrieve a one-dimensional Heston model

dg.t = -§t (,uytzdt + Ytth) 5
dY? =k (60— Y2) dt + oV; (,Oth + mdBt) )

with i = jiy = pand A = Ay = 1: this was proposed by [Eerny and Kallsen (2008)].

(11
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The model: a multidimensional Heston model | 5t

Letm = d, so that W € R? and B € R¢:
dS, = diag(Se) ((Adiag(Y?)a) dt + Adiag (Ye) dW;) ,
dy2 = diag(x) (6 — ¥2) dt + diag(c)diag (¥;) (diag(p)th + diag(y/I— pz)dBt> ,

(10)
where ji, %, 0, o, p € R? and A € R9*9,

» For m = 1 we retrieve a one-dimensional Heston model
dgt = -§t (uYtzdt + YtdWr) 5 11
avZ = 1 (0 - ¥2) dt + o, (pdW; + /1= p7dB;) an

with i = jiy = pand A = Ay = 1: this was proposed by [(Zerny and Kallsen (2008)].
» We obtain a closed-form solution for the BSRE (8)

Le = exp {w(t T) +¥(t, T)TYtz} :

where ¢ and ¢ satisfy a system of Riccati ODEs, generalizing the results in
[Shen and Zeng (2015)] to the multidimensional case.

» We can then prove uniqueness by adapting the approach of
[Shen and Zeng (2015)] to our setting, see Proposition 5.3.
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Outline |m|

The Deep BSDE solver
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The Forward-Backward SDEs |BI|

We can rewrite the problem like follows:

t t
Xr:x+/b(s,Xs)ds+/a(s,Xs)TdW5, x € R (12)
0 0

T T
yt:ﬁ(xr)+/ h(s,xs,ys,zs)ds—/ 2 TdWs, te0,T], (13)
t t

where

» W= (W,B)T € R¥;

» The forward processis X = (5,¥?)T € R,

» The control process is Z = (2", 2?)" with 27, 22 ¢ RY;

» The backward process ) is given by the BSDE that the quadratic hedging
approach requires to solve.
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The Forward-Backward SDEs |BI|

We can rewrite the problem like follows:

t t
Xr:XJr/b(S,XS)dSJr/G(S,XS)TdWS, x € R (12)
0 0

T T
yt:ﬁ(xr)+/ h(s,xs,ys,zs)ds—/ 2 TdWs, te0,T], (13)
t t

where

» W= (W,B)" ¢ R,

» The forward processis X = (5,¥?)T € R,

» The control process is Z = (2", 2?)" with 27, 22 ¢ RY;

» The backward process ) is given by the BSDE that the quadratic hedging
approach requires to solve.

The stochastic control problem

A solution (), Z) to (13) is a minimiser of

min E [[9(Xr) — Vr|?|. (14)
Y=Y0, Z=(Zt)tep,n
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The Deep BSDE solver El

The idea of the Deep BSDE solver of [E, Han and Jentzen (2017)] is to numerically
solve a discretized version of (14). Then, at each time step n, the control process
Z is approximated by an artificial neural network (ANN).
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The Deep BSDE solver

| B1 |
The idea of the Deep BSDE solver of [E, Han and Jentzen (2017)] is to numerically

solve a discretized version of (14). Then, at each time step n, the control process
Z is approximated by an artificial neural network (ANN).

» For N e N, weintroduceagrid0=t¢t; <t; <...<ty=Twith step Ats.t. t, = nAt;
» Let AW, = th“ - Wy

ne

We consider an Euler-Maruyama discretization of (12)-(13), and introduce for each n,
an ANN \V,, : R?? — R??, We get:

X,H_’] - Xn + b(tn7 Xn)At + a(tn, Xn)TAWn,

Xy = X, (15)
j}n+1 = j}n - h(tnaXnaynaNn)At‘i‘NnTAWn,

Jo=y. (16)
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The Deep BSDE solver

The idea of the Deep BSDE solver of [E, Han and Jentzen (2017)] is to numerically

solve a discretized version of (14). Then, at each time step n, the control process
Z is approximated by an artificial neural network (ANN).

» For N e N, weintroduceagrid0=t¢t; <t; <...<ty=Twith step Ats.t. t, = nAt;
» Let AW, = th“ - Wy

ne

We consider an Euler-Maruyama discretization of (12)-(13), and introduce for each n,
an ANN \V,, : R?? — R??, We get:

X,H_’] - Xn + b(tn7 Xn)At + a(tn, Xn)TAWn,

Xy = X, (15)
j}n+1 = j}n - h(tnaXnaynaNn)At‘i‘NnTAWn,

Jo=y. (16)

If now P((Nn)N=) denotes the set of parameters (i.e. weights and biases) of all the
ANNSs, then the stochastic control problem (14) becomes

2
min E“ﬂ(xN)yN( } (17)
y. PN

IBII
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Outline |m|

Numerical experiments
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Benchmarks | 5t

» One-dimension: we compare the price process and the hedging strategies with the
semi-explicit solutions
e Local-risk minimization: [Heath et al. (2001)];

e Mean-variance hedging: [ﬁerny and Kallsen (2008)];

» Multi-dimension: we can only compare the price at time 0 by Monte Carlo for the
process X = (S,Y?)7.
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Local risk minimization |51

Portfolio dimension: 1 MC price: 6.854
Time steps 10 50 100

BSDE solver price  6.829 6.846  6.855
Relative error (%) 0.360 0.120 0.0162
_________Trainingtime(s) = 128 735 1546

PDE price  6.850 6.850 6.850
Relative error (%) 0.0488 0.0613 0.0618

Portfolio dimension: 20 MC price: 30.761
Time steps 10 50 100

BSDE solver price 30.704 30.783 30.828
Relative error (%) 1.322 0.568 0.218
Training time (s) 418 1993 3660

Portfolio dimension: 100 MC price: 68.950
Time steps 10 50 100

BSDE solver price 68.269 68.427 69.020
Relative error (%) 0.988 0.758 0.101
Training time (s) 1772 9096 16527
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Local risk minimization: d =1, N =10 lBI]
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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Local risk minimization: d =1, N =50 lBI]
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

19/28



Local risk minimization: d =1, N =100 I.BI]

Shares of risky asset

° ° S °
Units of cash account
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Time
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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MSE local risk minimization: d = 1 [BII
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Figure: Above: shares of risky asset (left) and units of cash account (right); below: option price.
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Mean-variance hedging

Portfolio dimension: 1 MC price: 6.837
L value: 0.99984
Time steps 10 50 100
BSDE solver L value 0.99969 0.99970 0.99969
Relative error (%) 0.01476 0.01434 0.01493
- _____Msttrainingtime(s) ____ 82 _ _: 576 1048
BSDE solver price 6.830 6.854 6.838
Relative error (%) 0.105 0.246  0.0250
,,,,,,, 2nd training time (s) __ 1015 3270 _ 5785
PDE price 6.853 6.853 6.853
Relative error (%) 0.245 0.233 0.232
Portfolio dimension: 100 MC price: 68.831
L value: 0.97002
Time steps 10 50 100
BSDE solver L value 0.97044 0.97007 0.97024
Relative error (%) 0.02936 0.00489 0.0230
_______tsttrainingtime(s) _ 1757 9860 20917
BSDE solver price  68.168 68.892 68.910
Relative error (%) 0.964 0.0878 0.114
2nd training time (s) 4516 21843 40253

o]
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Mean-variance hedging: d =1, N =10 lBI]
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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Mean-variance hedging: d =1, N =50 I.BI]
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).

24/28



o.

Mean-variance hedging: d =1, N = 100
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Figure: Deep solver solution (solid line) and benchmark solution (dashed line).
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MSE Mean-variance hedging: d = 1 lBI]
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Figure: Above: shares of risky asset (left) and units of cash account (right); below: option price.
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A note on the solver IBIl

» Initially, we assumed that the coefficients are F-adapted, while
[E, Han and Jentzen (2017)] works under the assumption of Markovianity: due to
our modelling choice, it is natural for us to apply a Markovian solver;

» For non-Markovian model, such as the rough Heston model in [El Euch and
Rosenbaum (2019)] and the rough-Bergomi model of [Bayer, Friz and Gatheral
(2019)], the valuation equations take the form of BSPDEs which can be numerically
solved by suitable extensions of the original solver of [E, Han and Jentzen (2017)],
see e.g. [Bayer, Qiu and Yao (2022)], [Jacquier and Oumgari (2023)].

» The concrete mathematical structure of the model of choice will determine a
certain variation of the reasoning we propose.

» Other deep learning-based solvers for BSDEs (or associated PDEs) in the Markovian
setting can be found in the literature, see e.g. [Huré, Pham and Warin (2020)],
[Beck et al. (2021)].

» We don't exclude that other solvers could be also used in the same context.
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