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A financial product: Option

@ An option gives a holder the right (not obligation) to trade underlying
asset S(t), at a pre-determined price K in future 7.

@ The option price V(¢,S) is the contract fee the holder should pay at
time t < T (e.g., starting time ¢ = 0).

VI vers - max(S(T) — K, 0)

V(t,S)=?whent <T.

European call options allow the holder to buy the underlying asset at price K
in the maturity time 7.
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Black-Scholes implied volatility

@ The Black-Scholes (BS) model reads V = BS(o, S;, K, T — t,r) with
risk-free interest rate r, volatility o.

o The BS implied volatility c* = BS~! (V" S, K, T — t,r), given the
observed market option price V",

o Implied volatility o* := o*(K, T — t) varies over strike prices and
time to maturity in practice to form a three-dimenionsal surface.

Implied Volatility Surface

Implied volatility surface S&P-500 options, November 5th 2023.
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Modelling implied volatility surfaces

@ Mathematical models: stochastic volatility models (Heston, Bates,
etc). Model calibration is required for open parameters.
» Deep learning volatility [Horvath, et al, 2019].
» Calibration Neural Networks [Liu, et al, 2019].
o Data-driven methods: deep generative modelling of IVS
» Variational Autoencoders [Bergeron, et al, 2021]
» Generative Adversarial Networks [Na, et al, 2023]
» Diffusion Probabilistic Model [Liu, Ma, et al, 2023]
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Mathematical models for volatility surfaces

@ Geometric Brownian motion (Black-Scholes model),
ds(r) = rS(r) dr + VuS() dWR(r), v =02,
@ Considering stochastic volatility (Heston model),

dS(r) = rS(r) dt + /v (1)S(t) AW(z)
dv(t) = k(v —v(t))dt + v/v (1) dWVQ (1)
dWR(1) dW2(1) = pdr,

o Considering price jumps (Bates model),

c?((r)) (r = ME[e! — 1]) di + /v () dWR(0) + (¢ = 1) dXp (1),

dv(t) = k(7 — v(1)) dr 4+ v/v(t) AWR(r)
dWR(r) dWQ(r) = pdr, Xp(r) is a Poisson process for jumps.
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Model calibration

@ The difference between model value Q and market value Q* reads,
N p—
J(©) == wil|Q: — Of[| + Alle]],
i=1

where Q could be either an option price or implied volatility, N the
number of market quotes, A a regularization factor.

@ The objective function,

argmin J(©),
O€eR"

with n the number of model parameters, e.g., © := [p, k, 7, 7, 1] in
Heston, © := [p, k, 7, 7, o, Aj, 17, 0] in Bates.
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Challenges of model calibration

@ Model calibration is computationally expensive and slow.

@ The objective functions are often non-convex (local minima).

volatility of volatility 0 eedof )
speed of mean reversion

Multiple minima when calibrating Heston (Gilli and Schumann, 2011).

» Calibration Neural Network (CaNN)', a deep learning-based
framework for fast model calibration, has been developed.

1S. Liu, et al.(2019) A neural network-based framework for financial model calibration, J. of Mathematics in Industry
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Artificial Neural Networks (ANNSs)

@ ANNSs are a composite function mathematically,
F(al®) = £ (.. (£ 0 (;00));00)); .00

where © = (W;, b;), W, weight matrix and b- bias vector.
@ A hidden neuron follows z( = oM (Z w,; (h Y4 b;h)>.

Input lay Hidden lay Output lay
P ayver e uput layer Inputs Neuron Output
(x) ;Je'{g'ﬁlé"""si;é """" activation
- " b
(%) ©)
X2 @ z
\Z
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Training ANNs

@ Stochastic Gradient Descent (SGD) algorithm to update the
weights and biases during the training phase,

Wi« Wi —n() S,
bit1 < b; — n(i)%,
7 learning rate, L loss function,i =0, 1,2, ...

The variants include Adam, RMSprop, etc.

@ The goal of training the ANN is optimizing hidden parameters ©
to minimize the loss function.
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Calibration neural networks

@ CaNN consists of three phases, training/prediction/calibration.

@ The training/prediction phases learn behaviours of numerical solvers,
while the calibration phase inverts the trained ANN.

o The three phases are viewed as a whole, and the difference is to
simply open/close the learnable units in input/hidden/ouput layers.

Toput layer Hidden layer Output layer Tnput layer Hidden layer Output layer

. Non-trainable node O Trainable node . Non-trainable node Q Trainable node

(c) Training phase (offline) (d) Calibration phase (online)
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Optimization algorithms for CaNN

» The training phase: gradient-based stochastic local optimizer, e.g.
Adam.

» The calibration phase: gradient-free global optimizer, e.g. Differential
evolution (DE).

Differential Evolution method

@ Initialization: Randomly generate a population with N,
individuals,
(61,63, ...,0y,)

© Mutation: Add a randomly sampled difference to each individual,
0{:0114’1:'(017*00)

where, i represents the i-th candidates.

@ Crossover: Filter out some samples by a user-defined crossover
possibility Cr € [0, 1],

o — { 0;.if p; < Cr
! 0;, otherwise

@ Selection: Compare each new trial candidate with the
corresponding target individual on the objective function,

o7, if g(87) < g(6))
0;, otherwise.

e,%—{




Accelerated CaNN

> A generation of candidates enter into the ANN simultaneously.

Candidate 2(°1)
Condicatent™

Loop TTANNT T ANN

(e) Conventional DE (f) Parallel DE

framework: CaNN



Calibrating Heston model

@ The Heston option pricing PDE reads,

ov ov v 1 L,V

o T s TR g, TS oe
2 2

+ p’ySu,aV 12 o —rV =0.

oson, T2 oz

where V = V(1, S, v,; K, T) is the option price at time 7, with suitable
terminal conditions.

o Calibrating Heston model is to estimate five parameters, correlation
coefficient p, long term variance , reversion speed «, volatility of
volatility ~, initial variance v, given an implied volatility surface.
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Heston-CaNN

@ Heston-CaNN consists of two stages, a forward pass and a backward
pass,

. P> K, Vo, V, ¥ Heston |COSmethod Option |Brent | [mplied
@ The forward pass produces a fast ANN solver to solve Heston. The

backward pass (the calibration phase) yields input model parameters
to match the market data.

\ Pk, Vo, v, ¥ |

Forward pass: K.z, S0, 7

] | 2z
Backward pass: P>K, V0, V, ¥ Heston-CaNN | Kesor |
» Ty 00,

Heston-CaNN ‘—> Cimp ‘
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Performance of Heston-CaNN

o Calibration to 35 market quotes (7 strikes and 5 maturity time).

@ Heston-CaNN performance over 15,625 test cases.

Deviation from true ®* Averaged Cost/Error

vl — 15| 439 x107* | CPU time (seconds) 0.85
|7t — "]  4.54 x 10~ | GPU time (seconds) 0.48
[y —~*| 3.28 x 1072 | Function evaluations 193,249
|pf — p*| 4.84 x 1072 | Data points 35
|«f —K*|  4.88 x 1072 | Calibration error J(©) 2.52 x 10~°
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A higher dimensional case: Bates-CaNN

o Calibrate eight parameters using Bates-CaNN to deal with more

complex implied volatility surfaces.

@ The dotted implied volatility curves are from Bates-CaNN, and the
solid curves are "observed" in the market.

Parameters Search space | True Calibrated
Intensity of jumps, A\s [0, 3.0] 1.0 1.06
Mean of jumps, ji; [0, 0.4] 0.1 0.09
Variance of jumps, v7 [0, 0.3] 0.42 0.15
Correlation, p [-0.9, 0.0] -0.3 -0.22
Reversion speed, x [0.1, 3.0] 1.0 0.60
Long average variance, o [0.01, 0.5] 0.1 0.13
Volatility of volatility, [0.01, 0.8] 0.7 0.78
Initial variance, v [0.01, 0.5] 0.1 0.10
Total Squared Error - - 49x107°
Function evaluation - 842,800
Time(seconds) - 1.8
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CaNN for rough Heston model

There are six parameters to calibrate in rough Heston model 2.

dS;, = Sey/ud Wi,

1ot o 1" o
vt:vo+@/(;(tfs) 17(971)3)ds+r(a)/0(t75) "y /u5dBs, (2)

with @ € (1/2,1) determining the roughness of the volatility process, where
o= H +1/2. H is the Hurst parameter.
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Figure (19) Market vs. Model implied volatility smiles using the rough Heston-
ANN calibration

Log-moneyness

Erkan K. E.(2020). European option pricing under the rough Heston model using the COS method, MSc thesis; TU Delft.
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CaNN on real market data

Review of Dervatives Research 2022 25:109-136
hitps2/d0iorg/10.1007/511147-021-09183-7
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@ The performance of CaNN on real market data’

the CaNN framework does provide comparable
calibration results even in extreme and unusual market
situations in a faster and computationally more efficient
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covir ic in spring 2020. i i different
expiry tenor, swap tenor and strike values:

~ Option Tenor: 1M, 3M. 6M, 9M. 1Y, 2, 5Y, 10Y, 15Y, 20

~ Swap Tenor: 1Y, 2, 5Y, 10Y, 15Y, 20Y, 30Y

~ Strike (ATM  bp): 0, 12.5, 25, 50, 100, 150, 200
On each trading day, we observe valid prices for about 800 swaptions. This amounts
1024 total number of more than 350,000 price observations. In practical applications,

p p NN approach, whercas the
black line coincides with the SSE of the benchmark implemenation.

the period from June 2019 to August 2019 or the carly months of 2019. The largest
deviation between the CaNN and the benchmark implementation can be observed
during the COVID-19 period in the March 2020. Nevertheless, the daily performance
of both approaches does not differ significantly even in this stressed market envi-
ronment. Hence, the CaNN framework does provide comparable calibration results
even in extreme and unusual market situations in a faster and computationally more
efficient manner. Furthermore, the very good results for the out-of-time period (May
1o September 2020) indicate that the performance of the CaNN framework does not
depend on including current market data during training.

3Buchel, et al. (2021) Deep calibration of financial models: turning theory into practice. Review of Derivatives Research.




Diffusion Probabilistic Model for Implied Volatility Surface

Generation and Completion

@ Mathematical models: stochastic volatility models (Heston, Bates,
etc). Model calibration is required for open parameters.

» Deep learning volatility [Horvath, et al, 2019].
» Calibration Neural Networks [Liu, et al, 2019].
o Data-driven methods: deep generative modelling of IVS,

» Variational Autoencoders [Bergeron, et al, 2021].
» Generative Adversarial Networks [Na, et al, 2023].
» Diffusion Probabilistic Model [Liu, Ma, et al, 2023]*.

4Ma, X. (2023). Diffusion Probabilistic Model for Implied Volatility Surface Generation and Completion, MSc Thesis,
TU Delft
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Overview of generative deep learning models

» Generative Adversarial Networks (GAN).
» Variational Autoencoder (VAE).

» Flow-based models.
» Diffusion probabilistic models.

Liu, TU Delft

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

x'

3 A generative deep learning method: DDPM
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Denoising Diffusion Probabilistic Models

o Diffusion models employ neural networks to remove noise,
Forward process: dx = f(x,¢) dr + g(r) dW ,x(0) = xo
Reverse process: dx = [f(x, 1) — g(t)*Vxlog ¢:(x)] dt + g(t) dW ,x(T) = x1

. po(Xt 11Xe) . : :
q(Xt|Xt—1)

@ Denoising Diffusion Probabilistic Models (DDPM) [Ho, et al, 2020]
use the Markov chain of forward (reverse) diffusion process,

= ——6 df+ v B dW X = Xy,

where 3(t) := f5; € (0, 1) is a user-defined hyperparameter.

q(Xt_1|Xt) is unknown
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Denoising Diffusion Probabilistic Models

Training Generating
1: Input: implied volatility surfaces g(Xo). 1: Input: already trained networks €g.
2: repeat 2: xy ~ N(0,1)
3:  Select xo from g(xo) 3: fort=M,...,1do
4: t~ Uniform({1,...,M}) 4: 2z~ N(O,1)ifr> 1,elsez=10
50 e~ N(0,1) 50 oxer = o (- deeo(xn) +
6:  Stochastic Gradient Descent ) a,;_l var M VI=a o (x.)
Vo |le — eo(vaxo + VI — e 1) 6: end for
7: until converged 7: return xo

> X, := X(¢) represents the intermediate result at time 7.
> €p(x;,t) represents a neural network with hidden parameters ©.

» The hyper-parameters o, = 1 — 5, and &, = an 1 Qe
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Comparison between generating and completing [VS

Given already trained neural networks eg,

o IVS Generation: starting from a random IVS x,—, go backward
through reparameterization

1 1-—
X = —— (% — ——eq(x,,1) | + 0u2. 3)
\/ O vV 1-— (67

@ IVS Completion: starting from a random IVS x,—j; and an incomplete
IVS xo,

X1 =m @xicnown (1 o m) G)_xtt,tzklnown7 (4)
where matrix m locates missing data points,
xknown — faexo + (1 — oy )e, € ~ N(0,1), and

N (Xt I eg(x, )) 402,72~ N(0,1).
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Completing partial IVS with DDPM

Algorithm Completing partial IVS with DDPM

: Input: already trained NN €g and partial IVS Xo.
: Sample initial state x); ~ A(0,I).
cfort=M,...,1do

z~N(0,I),e ~N(0,1)

unknown __ 1 1—ay

1
2
3
4
5: X = & (X - meg(xt,t)) + o0,z
6
7
8
9

X = JaXo + (1 — )€
X—1 = m O XM 4 (1 —m) @ xknown
: end for

: Output: a completed IVS xp.
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The process of generating IVS with DDPM
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Generating IVS

o Implied volatility curves (smile, etc) generated by DDPM

Ksigma Curves for T=0.5

o Statistics distance between generated and historical IVS:

Timestep | 1-Wasserstein
0 611.23
300 461.37
450 75.52
499 3.68
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Completing partial IVS

o Comparing partial IVS (Left) with completed IVS (Right) by DDPM:

°
G
<
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Completing partial IVS (Cont’)
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Conclusions and ongoing work

Conclusions:

@ CaNN provides a fast model calibration framework for stochastic
volatility models.

o DDPM can produce high-quality synthetic and complete partial
implied volatility surfaces.

o The generative Al approach, diffusion models, can complement the
mathematical modelling approach in processing implied volatility
surfaces.

Ongoing work:

o Explicitly incorporate the arbitrage-free conditions into the DDPM
generation process for implied volatility surfaces, aiming to enhance
financial consistency and reliability.
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