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A financial product: Option

An option gives a holder the right (not obligation) to trade underlying
asset S(t), at a pre-determined price K in future T .

The option price V(t, S) is the contract fee the holder should pay at
time t < T (e.g., starting time t = 0).

European call options allow the holder to buy the underlying asset at price K
in the maturity time T .
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Black-Scholes implied volatility

The Black-Scholes (BS) model reads V = BS(σ, St,K,T − t, r) with
risk-free interest rate r, volatility σ.
The BS implied volatility σ∗ = BS−1(Vmkt, St,K,T − t, r), given the
observed market option price Vmkt.
Implied volatility σ∗ := σ∗(K,T − t) varies over strike prices and
time to maturity in practice to form a three-dimenionsal surface.

Implied volatility surface S&P-500 options, November 5th 2023.
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Modelling implied volatility surfaces

Mathematical models: stochastic volatility models (Heston, Bates,
etc). Model calibration is required for open parameters.
▶ Deep learning volatility [Horvath, et al, 2019].
▶ Calibration Neural Networks [Liu, et al, 2019].

Data-driven methods: deep generative modelling of IVS
▶ Variational Autoencoders [Bergeron, et al, 2021]
▶ Generative Adversarial Networks [Na, et al, 2023]
▶ Diffusion Probabilistic Model [Liu, Ma, et al, 2023]
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Mathematical models for volatility surfaces

Geometric Brownian motion (Black-Scholes model),

dS(t) = rS(t) dt +
√
νS(t) dWQ

s (t) , ν = σ2,

Considering stochastic volatility (Heston model),

dS(t) = rS(t) dt +
√
ν(t)S(t) dWQ

s (t) ,

dν(t) = κ(ν̄ − ν(t)) dt + γ
√
ν(t) dWQ

ν (t) ,

dWQ
s (t) dWQ

ν (t) = ρ dt ,

Considering price jumps (Bates model),

dS(t)
S(t)

=
(
r − λJE[eJ − 1]

)
dt +

√
ν(t) dWQ

s (t) +
(
eJ − 1

)
dXP(t) ,

dν(t) = κ(ν̄ − ν(t)) dt + γ
√

ν(t) dWQ
ν (t) ,

dWQ
s (t) dWQ

ν (t) = ρ dt , XP(t) is a Poisson process for jumps.
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Model calibration

The difference between model value Q and market value Q∗ reads,

J(Θ) :=

N∑
i=1

ωi||Qi − Q∗
i ||+ λ̄||Θ||,

where Q could be either an option price or implied volatility, N the
number of market quotes, λ̄ a regularization factor.

The objective function,

argmin
Θ∈Rn

J(Θ),

with n the number of model parameters, e.g., Θ := [ρ, κ, γ, ν̄, ν0] in
Heston, Θ := [ρ, κ, γ, ν̄, ν0, λJ, µJ, σJ] in Bates.
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Challenges of model calibration

Model calibration is computationally expensive and slow.

The objective functions are often non-convex (local minima).

Multiple minima when calibrating Heston (Gilli and Schumann, 2011).

▶ Calibration Neural Network (CaNN)1, a deep learning-based
framework for fast model calibration, has been developed.

1
S. Liu, et al.(2019) A neural network-based framework for financial model calibration, J. of Mathematics in Industry
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Artificial Neural Networks (ANNs)

ANNs are a composite function mathematically,

F (x|θ) = f (H)(...f (2)(f (1)(x; θ(1)); θ(2)); ...θ(H))

where θ = (Wi,bi), Wi weight matrix and bi bias vector.

A hidden neuron follows z(h)j = φ(h)
(∑

iw
(h)
ij z

(h−1)
i + b

(h)
j

)
.
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Training ANNs

Stochastic Gradient Descent (SGD) algorithm to update the
weights and biases during the training phase,

Wi+1 ←Wi − η(i) ∂L
∂W ,

bi+1 ← bi − η(i)∂L
∂b ,

η learning rate,L loss function, i = 0, 1, 2, ...

The variants include Adam, RMSprop, etc.

The goal of training the ANN is optimizing hidden parameters θ
to minimize the loss function.
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Calibration neural networks

CaNN consists of three phases, training/prediction/calibration.

The training/prediction phases learn behaviours of numerical solvers,
while the calibration phase inverts the trained ANN.

The three phases are viewed as a whole, and the difference is to
simply open/close the learnable units in input/hidden/ouput layers.

(c) Training phase (offline) (d) Calibration phase (online)
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Optimization algorithms for CaNN

▶ The training phase: gradient-based stochastic local optimizer, e.g.
Adam.

▶ The calibration phase: gradient-free global optimizer, e.g. Differential
evolution (DE).

Differential Evolution method
1 Initialization: Randomly generate a population with Np

individuals,
(θ1,θ2, ...,θNp)

2 Mutation: Add a randomly sampled difference to each individual,

θ′
i = θa + F · (θb − θc)

where, i represents the i-th candidates.
3 Crossover: Filter out some samples by a user-defined crossover
possibility Cr ∈ [0, 1],

θ′′
i =

{ θ′
i , if pi ≤ Cr

θi, otherwise

4 Selection: Compare each new trial candidate with the
corresponding target individual on the objective function,

θi ←
{ θ′′

i , if g(θ′′
i ) ≤ g(θi)

θi, otherwise.
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Accelerated CaNN

▶ A generation of candidates enter into the ANN simultaneously.

(e) Conventional DE (f) Parallel DE
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Calibrating Heston model

The Heston option pricing PDE reads,

∂V
∂t

+ rS
∂V
∂S

+ κ(ν̄ − νt)
∂V
∂νt

+
1
2
νtS2∂

2V
∂S2

+ ργSνt
∂2V
∂S∂νt

+
1
2
γ2νt

∂2V
∂ν2

t
− rV = 0.

where V = V(t, S, νt;K,T) is the option price at time t, with suitable
terminal conditions.

Calibrating Heston model is to estimate five parameters, correlation
coefficient ρ, long term variance ν̄, reversion speed κ, volatility of
volatility γ, initial variance ν0, given an implied volatility surface.
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Heston-CaNN

Heston-CaNN consists of two stages, a forward pass and a backward
pass,

The forward pass produces a fast ANN solver to solve Heston. The
backward pass (the calibration phase) yields input model parameters
to match the market data.
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Performance of Heston-CaNN

Calibration to 35 market quotes (7 strikes and 5 maturity time).

Heston-CaNN performance over 15,625 test cases.

Deviation from true Θ∗ Averaged Cost/Error

|ν†
0 − ν∗

0 | 4.39 × 10−4 CPU time (seconds) 0.85

|ν̄† − ν̄∗| 4.54 × 10−3 GPU time (seconds) 0.48

|γ† − γ∗| 3.28 × 10−2 Function evaluations 193, 249

|ρ† − ρ∗| 4.84 × 10−2 Data points 35

|κ† − κ∗| 4.88 × 10−2 Calibration error J(Θ) 2.52 × 10−6
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A higher dimensional case: Bates-CaNN

Calibrate eight parameters using Bates-CaNN to deal with more
complex implied volatility surfaces.

The dotted implied volatility curves are from Bates-CaNN, and the
solid curves are "observed" in the market.

Parameters Search space True Calibrated
Intensity of jumps, λJ [0, 3.0] 1.0 1.06

Mean of jumps, µJ [0, 0.4] 0.1 0.09
Variance of jumps, ν2

J [0, 0.3] 0.42 0.15
Correlation, ρ [-0.9, 0.0] -0.3 -0.22

Reversion speed, κ [0.1, 3.0] 1.0 0.60
Long average variance, ν̄ [0.01, 0.5] 0.1 0.13
Volatility of volatility, γ [0.01, 0.8] 0.7 0.78

Initial variance, ν0 [0.01, 0.5] 0.1 0.10
Total Squared Error - - 4.9×10−6

Function evaluation - - 842,800
Time(seconds) - - 1.8 spot/strike price
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CaNN for rough Heston model

There are six parameters to calibrate in rough Heston model 2.

2
Erkan K. E.(2020). European option pricing under the rough Heston model using the COS method, MSc thesis, TU Delft.
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CaNN on real market data

The performance of CaNN on real market data3.

3
Buchel, et al. (2021) Deep calibration of financial models: turning theory into practice. Review of Derivatives Research.
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Diffusion Probabilistic Model for Implied Volatility Surface
Generation and Completion

Mathematical models: stochastic volatility models (Heston, Bates,
etc). Model calibration is required for open parameters.
▶ Deep learning volatility [Horvath, et al, 2019].
▶ Calibration Neural Networks [Liu, et al, 2019].

Data-driven methods: deep generative modelling of IVS,
▶ Variational Autoencoders [Bergeron, et al, 2021].
▶ Generative Adversarial Networks [Na, et al, 2023].
▶ Diffusion Probabilistic Model [Liu, Ma, et al, 2023]4.

4
Ma, X. (2023). Diffusion Probabilistic Model for Implied Volatility Surface Generation and Completion, MSc Thesis,

TU Delft
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Overview of generative deep learning models

▶ Generative Adversarial Networks (GAN).
▶ Variational Autoencoder (VAE).
▶ Flow-based models.
▶ Diffusion probabilistic models.
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Denoising Diffusion Probabilistic Models

Diffusion models employ neural networks to remove noise,

Forward process: dx = f (x, t) dt + g(t) dW , x(0) = x0

Reverse process: dx =
[
f (x, t)− g(t)2∇x log qt(x)

]
dt + g(t) dW , x(T) = xT

Denoising Diffusion Probabilistic Models (DDPM) [Ho, et al, 2020]
use the Markov chain of forward (reverse) diffusion process,

dx = −1
2
β(t) dt +

√
β(t) dW , x(0) = x0,

where β(t) := βt ∈ (0, 1) is a user-defined hyperparameter.
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Denoising Diffusion Probabilistic Models

Training
1: Input: implied volatility surfaces q(x0).
2: repeat
3: Select x0 from q(x0)
4: t ∼ Uniform({1, . . . ,M})
5: ϵ ∼ N (0, I)
6: Stochastic Gradient Descent

∇θ

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1 − ᾱtϵ, t)

∥∥2

7: until converged

Generating
1: Input: already trained networks ϵθ.
2: xM ∼ N (0, I)
3: for t = M, . . . , 1 do
4: z ∼ N (0, I) if t > 1, else z = 0
5: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+

σtz
6: end for
7: return x0

▶ xt := x(t) represents the intermediate result at time t.

▶ ϵθ(xt, t) represents a neural network with hidden parameters θ.

▶ The hyper-parameters αt = 1− βt and ᾱt =
∏M

i=1 αi.
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Comparison between generating and completing IVS

Given already trained neural networks ϵθ,

IVS Generation: starting from a random IVS xt=M, go backward
through reparameterization

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
+ σtz. (3)

IVS Completion: starting from a random IVS xt=M and an incomplete
IVS x̂0,

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 , (4)

where matrix m locates missing data points,
xknown

t−1 =
√
αtx̂0 + (1− αt)ϵ, ϵ ∼ N (0, I), and

xunknown
t−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz, z ∼ N (0, I).
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Completing partial IVS with DDPM

Algorithm Completing partial IVS with DDPM

1: Input: already trained NN ϵθ and partial IVS x̂0.
2: Sample initial state xM ∼ N (0, I).
3: for t = M, . . . , 1 do
4: z ∼ N (0, I), ϵ ∼ N (0, I)
5: xunknown

t−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

6: xknown
t−1 =

√
αtx̂0 + (1− αt)ϵ

7: xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1
8: end for
9: Output: a completed IVS x0.
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The process of generating IVS with DDPM

Intermediate time steps to generate an implied volatility surface.
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Generating IVS

Implied volatility curves (smile, etc) generated by DDPM

Statistics distance between generated and historical IVS:
Timestep 1-Wasserstein

0 611.23
300 461.37
450 75.52
499 3.68
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Completing partial IVS

Comparing partial IVS (Left) with completed IVS (Right) by DDPM:
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Completing partial IVS (Cont’)

Figure: The K − σ curves of completion of implied volatility surfaces.Shuaiqiang Liu, TU Delft 3 A generative deep learning method: DDPM 29 / 30



Conclusions and ongoing work

Conclusions:

CaNN provides a fast model calibration framework for stochastic
volatility models.

DDPM can produce high-quality synthetic and complete partial
implied volatility surfaces.

The generative AI approach, diffusion models, can complement the
mathematical modelling approach in processing implied volatility
surfaces.

Ongoing work:

Explicitly incorporate the arbitrage-free conditions into the DDPM
generation process for implied volatility surfaces, aiming to enhance
financial consistency and reliability.
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