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Mean-field games: an introduction

Mean-field games: an introduction

Foundations and applications

Introduced by Lasry and Lions (2006, 2007) and Huang, Caines,
Malhamé (2006) using PDE tools to describe large-population games
with symmetric interactions in a tractable way
Numerous applications in economics, finance, engineering,
epidemiology etc.

Systemic risk (e.g. Carmona, Fouque, Sun ’15, ’18), price impact and
optimal execution (e.g. Cardaliaguet-Lehalle ’16,
Cartea-Jaimungal-Penalva ’18), models for oil production
(Guéant-Lasry-Lions ’10, Chan-Sircar ’17), cryptocurrencies and
bitcoin mining (Bertucci, Bertucci, Lasry and Lions ’20), models for
energy markets, environment economics etc..

For a very recent review of applications: Carmona (2020).
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Mean-field games: an introduction

Mean-field games: an introduction

N-players game formulation
Each player controls its state X i

t ∈ Rd by taking an action
αi

t ∈ A ⊂ Rk :

dX i
t = b(t,X i

t , µ̄
N−1
X−i

t
, αi

t)dt + σ(t,X i
t , µ̄

N−1
X−i

t
, αi

t)dW i
t ,

W i are independent and µ̄N−1
X−i

t
is the empirical distribution of other

players.

Each player minimises the cost

J i (ααα) = E
[∫ T

0
f (t,X i

t , µ̄
N−1
X−i

t
, αi

t)dt + g(X i
T , µ̄

N−1
X−i

T
)

]
,

We look for a Nash equilibrium α̂αα : ∀i , ∀αi , J i (α̂αα) ≤ J i (αi , α̂αα−i ).
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Mean-field games: an introduction

Mean-field games: an introduction
Towards a mean-field game
When the number of agents is large, it is natural to consider the following
limiting version of the game:

The representative player controls its state Xα depending on the
deterministic flow (µt)0≤t≤T , which corresponds to the distribution of
states of all players:

dXα
t = b(t,Xα

t , µt , αt)dt + σ(t,Xα
t , µt , αt)dWt .

The aim of the player is to minimize the cost

inf
α∈A

Jµ(α), Jµ(α) = E
[∫ T

0
f (t,Xα

t , µt , αt)dt + g(Xα
T , µT )

]
(∗)

A mean-field equilibrium is a flow (µt)0≤t≤T such that L(X̂µ
t ) = µt ,

t ∈ [0,T ], where X̂µ is the solution to (∗).
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Mean-field games: an introduction

Mean-field games: an introduction

Approaches

• PDE approach: developed by Lasry and Lions (2006, 2007) and
Huang, Malhamé and Caines (2006) → coupled system of partial
differential equations: Hamilton-Jacobi-Bellman (backward) and
Fokker-Planck-Kolmogorov (forward).
• FBSDE approach: introduced by Carmona and Delarue (2012) →

coupled forward-backward stochastic differential equations with
coefficients which depend on the law of the solution.
• Compactification methods: Allow to solve the problem under mild
assumptions by relaxing the concept of equilibrium.
→ Controlled martingale problem (Lacker (2015)).
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Mean-field games: an introduction

Mean-field games: an introduction
PDE approach

The value function associated to the stochastic control problem is
characterized as the solution to a HJB equation

∂tV+max
α

{
f (t, x , µt , α) + b(t, x , µt , α)∂xV +

1
2σ

2(t, x , µt , α)∂2xxV
}

= 0

with the terminal condition V (T , x) = g(x , µT ).

The flow of densities solves the Fokker-Planck equation

∂tµt −
1
2∂

2
xx (σ2(t, x , µt , α̂t)µt) + ∂x (b(t, x , µt , α̂t)µt) = 0,

with the initial condition µ0 = δX0 , where α̂ is the optimal feedback
control.

⇒ A coupled system of a Hamilton-Jacobi-Bellman PDE (backward) and a
Fokker-Planck PDE (forward)
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MFG of optimal stopping: the linear programming approach

Optimal stopping MFG

State of the art

In optimal stopping mean-field games (aka MFG of timing), the strategy
of each agent is a stopping time.

Nutz (2017): bank run model with common noise, interaction
through proportion of stopped players;
Carmona, Delarue and Lacker (2017): a general timing game with
common noise, interaction through proportion of stopped players.
Pre-emption game.
Bertucci (2017): Markovian state of each agent; no common noise,
interaction through density of states of players still in the game,
analytic approach (obstacle problem), existence of mixed equilibria.
War of attrition.
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MFG of optimal stopping: the linear programming approach

Optimal stopping MFG

New approach: Linear programming formulation of MFG

• A compactification technique, inspired by works on LP formulation of
stochastic control (Stockbridge ’90, Cho and Stockbridge ’02).

• Particularly suitable for MFG with optimal stopping and control with
absorption: the lack of regularity of the flow µt makes it difficult to
use the analytic approach.
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MFG of optimal stopping: the linear programming approach

Optimal stopping MFG

Rationale and advantages of LP formulation

• Instead of iterating back and forth between the value function of the
single agent and the population dynamics, the problem is formulated
exclusively in terms of the population measure flow, which is the main
object of interest.

• The condition that the measure flow is the flow of marginal laws of a
stochastic process gives a linear constraint on the measure flow.

• This formulation simplifies both the theoretical analysis of the
problem (existence of equilibrium is established under weaker
assumptions) and the numerical computation of solutions.

• Equivalence to strong formulations may be shown under appropriate
assumptions.
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MFG of optimal stopping: the linear programming approach

Optimal stopping MFG
We develop theory and applications of the LP approach to MFG in a series
of papers:

Bouveret, Dumitrescu, and Tankov “Mean-field games of optimal stopping: a
relaxed solution approach.” SIAM J. Con. Optim. 58.4 (2020).
Aïd, Dumitrescu, and Tankov, “The entry and exit game in the electricity markets:
a mean-field game approach." Journal of Dynamics and Games 8.4 (2021).
Bouveret, Dumitrescu, and Tankov, “Technological Change in Water Use: A
Mean-Field Game Approach to Optimal Investment Timing.” Operations Research
Perspectives 9 (2022).
Dumitrescu, Leutscher, and Tankov, “Control and optimal stopping Mean Field
Games: a linear programming approach.” Electronic Journal of Probability 26
(2021).
Dumitrescu, Leutscher, and Tankov, “Linear Programming Fictitious Play
algorithm for Mean Field Games with optimal stopping and absorption”, to appear
in ESAIM:Mathematical Modeling and Numerical Analysis
Dumitrescu, Leutscher, and Tankov, “Energy transition under scenario uncertainty:
a mean-field game approach.” arXiv:2210.03554 (2022).

Roxana Dumitrescu (King’s College) Control and optimal stopping MFG 12 / 65



MFG of optimal stopping: the linear programming approach

Optimal stopping MFG

N-players game problem

Consider N agents X i , i = 1, . . . ,N with dynamics

dX i
t = b(t,X i

t )dt + σ(t,X i
t )dW i

t , X i
0 ∈ O,

where W i , i = 1, . . . ,N are independent.

In the talk, to simplify notation, we assume either O = R or O ⊂ R
with unattainable boundary; Rn and absorbing boundary can also be
considered.
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MFG of optimal stopping: the linear programming approach

Optimal stopping MFG
N-players game problem

Each agent aims to solve the following optimal stopping problem:

sup
τ

E
[∫ τ

0
f
(
t,X i

t ,mN−1
t

)
dt + g

(
τ,X k

τ , µ
N−1

)]
,

where

mN−1
t (dx) =

1
N − 1

N−1∑
k=1;k 6=i

δXk
t

(dx)1t≤τk ,

and

µN−1(dt, dx) =
1

N − 1

N−1∑
k=1;k 6=i

δ(τk ,Xk
τ )(dt, dx),

with τk is the stopping time chosen by the player k.
Look for Nash equilibria.
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MFG of optimal stopping: the linear programming approach

Optimal stopping MFG

MFG formulation

As N →∞, we expect mN converge to deterministic limit m.

State process of the representative agent

dXt = b(t,Xt)dt + σ (t,Xt) dWt ,

The optimal stopping problem for the agent takes the form

sup
τ

E
[∫ τ

0
f (t,Xt ,mt) dt + g(τ,Xτ , µ)

]
. (1)
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MFG of optimal stopping: the linear programming approach

Optimal stopping MFG

Given the solution τm,µ of the problem (1) for the agent facing a
mean-field ((mt)t∈[0,T ], µ), find ((mt)t∈[0,T ], µ) such that

mt(B) = P [Xt ∈ B, t < τµ,m] ,B ∈ B(O), t ∈ [0,T ]. (2)

and
µ = L (τµ,m,Xτµ,m ) . (3)

Solution of the optimal stopping MFG: fixed point of (2)− (3).
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MFG of optimal stopping: the linear programming approach

Linear programming approach for optimal stopping

Single agent problem
• We start with the single agent problem (no mean-field terms here):

sup
τ∈T

E
[∫ τ

0
f (t,Xt) dt + g(τ,Xτ )

]
,

s.t. dXt = b (t,Xt) dt + σ (t,Xt) dWt ,

X0 ∼ m?
0.
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MFG of optimal stopping: the linear programming approach

Linear programming approach for optimal stopping

For any τ ∈ T , define the flow of subprobability measures mτ and
the probability measure µτ by

mτ
t (B) = P (Xt ∈ B, t < τ) , B ∈ B(O), t ∈ [0,T ],

µτ (C) = P((τ,Xτ ) ∈ C), C ∈ B([0,T ]× Ō).

We can rewrite the expected reward

E
[∫ τ

0
f (t,Xt) dt + g (τ,Xτ )

]
=

∫ T

0

∫
O
f (t, x)mτ

t (dx)dt +

∫
[0,T ]×Ō

g(t, x)µτ (dt, dx).
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MFG of optimal stopping: the linear programming approach

Linear programming approach for optimal stopping

We apply Itô’s formula to u ∈ C1,2
b ([0,T ]× R) up to time τ and we

get

u(τ,Xτ ) = u(0,X0) +

∫ τ

0
(∂tu + Lu) (t,Xt)dt

+

∫ τ

0
(σ∂xu)(t,Xt)dWt ,

where

Lu(t, x) = b(t, x)∂xu(t, x) +
σ2

2 (t, x)∂xxu(t, x).
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MFG of optimal stopping: the linear programming approach

Linear programming approach for optimal stopping

Taking the expectation in the above expression, we get∫
[0,T ]×Ō

u(t, x)µτ (dt, dx) =

∫
R
u(0, x)m∗0(dx)

+

∫ T

0

∫
O

(∂tu + Lu) (t, x)mτ
t (dx)dt.

→ The set of tuples (µτ ,mτ ), τ ∈ T is included in the set:

Definition
Let R be the set of (µ,m) such that for all u ∈ C1,2

b ([0,T ]×O)∫
[0,T ]×Ō

u(t, x)µ(dt, dx) =

∫
O
u(0, x)m∗0(dx)

+

∫ T

0

∫
O

(∂tu + Lu) (t, x)mt(dx)dt.

Roxana Dumitrescu (King’s College) Control and optimal stopping MFG 7 July 2023 20 / 65



MFG of optimal stopping: the linear programming approach

Linear programming approach for optimal stopping

The linear programming formulation consists in solving the problem

V LP := sup
(µ,m)∈R

∫ T

0

∫
O
f (t, x)mt(dx)dt +

∫
[0,T ]×Ō

g(t, x)µ(dt, dx).

The initial problem is embedded in this one.

Roxana Dumitrescu (King’s College) Control and optimal stopping MFG 7 July 2023 21 / 65



MFG of optimal stopping: the linear programming approach

Linear programming approach for optimal stopping
Existence result
Assume that b, σ are measurable and Lipschitz in x , f is jointly
measurable and continuous in x for all t, g is continuous with respect to
(t, x) and f , g satisfy

|f (t, x)| ≤ c(1 + |x |2)| and |g(t, x)| ≤ c(1 + |x |2)|

for some c > 0.

Theorem (Existence of a solution for the LP problem)

There exists a solution to the linear programming problem for the single
agent, i.e. there exists (µ?,m?) ∈ R such that

V LP =

∫ T

0

∫
O
f (t, x)m?

t (dx)dt +

∫
[0,T ]×Ō

g(t, x)µ?(dt, dx)

.
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MFG of optimal stopping: the linear programming approach

MFG linear programming formulation

• We denote by V2 the set of (identified t-a.e.) subprobability measure
flows m = (mt)t∈[0,T ] ⊂ Psub(Ō) such that t 7→ mt(B) is measurable
for each B ∈ B(O), mt is finite and

∫ T
0
∫
Ō |x |2mt(dx)dt <∞.

• We endow V2 with the topology of weak convergence of the
associated measures mt(dx)dt, that is, we say that the sequence
(mn

t )t∈[0,T ] ⊂ V2 converges to (mt)t∈[0,T ] ∈ V2 if for all continuous
functions ϕ with quadratic growth,

∫ T

0

∫
O
ϕ(t, x)mn

t (dx)dt −→
n→∞

∫ T

0

∫
O
ϕ(t, x)mt(dx)dt.

• Let P2([0,T ]× Ō) be endowed with the topology of weak
convergence.
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MFG of optimal stopping: the linear programming approach

MFG linear programming formulation

Fix a pair (µ̄, m̄) ∈ P2([0,T ]× Ō)× V2.
• Let Γ[µ̄, m̄] : P2([0,T ]× Ō)× V2 7→ R be defined by

Γ[µ̄, m̄](µ,m) =

∫ T

0

∫
Ō
f (t, x , m̄t)mt(dx)dt

+

∫
[0,T ]×Ō

g(t, x , µ̄)µ(dt, dx).
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MFG of optimal stopping: the linear programming approach

MFG linear programming formulation

We say that (µ?,m?) ∈ P2([0,T ]× Ō)× V2 is an LP MFG Nash
equilibrium if (µ?,m?) ∈ R and for all (µ,m) ∈ R,

Γ[µ?,m?](µ,m) ≤ Γ[µ?,m?](µ?,m?).

The real number Γ[µ?,m?](µ?,m?) is called a Nash value.
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MFG of optimal stopping: the linear programming approach

Existence of LP MFG equilibria

Main assumptions

• The coefficients b : [0,T ]× R→ R and σ : [0,T ]× R→ R+ are
jointly measurable, Lipschitz in x uniformly on t.

• The function (t, x ,m) 7→ f (t, x ,m) is jointly measurable and
continuous in (x ,m) for each t. The function g is jointly continuous.
Moreover, there exists a constant c2 > 0 such that for all (t, x ,m, µ)

|f (t, x ,m)| ≤ c2
(
1 + |x |2 +

∫
Ō
|z |2m(dz)

)
,

|g(t, x , µ)| ≤
(
1 + |x |2 +

∫
Ō
|z |2µ(ds, dz)

)
.
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MFG of optimal stopping: the linear programming approach

Existence of LP MFG equilibria

Define Θ : R → 2R as

Θ(µ̄, m̄) = argmax
(µ,m)∈R

Γ[µ̄, m̄](µ,m).

⇒ the set of Nash equilibria coincides with the set of fixed points of the
set-valued mapping Θ.

Theorem
The set of LP MFG Nash equilibria is compact and nonempty.

The proof is based on Kakutani-Fan-Glicksberg Theorem.
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MFG of optimal stopping: the linear programming approach

Uniqueness of the Nash value

Suppose also that f and g take the following form

f (t, x ,m) = f1(t, x)f2
(
t,
∫
R
f1(t, y)m(dy)

)
+ f3(t, x)

g(t, x , µ) = g1(t, x)g2
(∫

[0,T ]×R
g1(s, y)µ(ds, dy)

)
+ g3(t, x),

where f1, f2, f3, g1, g2, g3 are bounded and measurable, f2 is
non-increasing in the second argument and g2 is non-increasing.
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MFG of optimal stopping: the linear programming approach

Uniqueness of the Nash value

Let (µ1,m1) and (µ2,m2) be two LP Nash equilibria. Then,

f2
(
t,
∫
R
f1(t, y , u)m1

t (dy , du)

)
= f2

(
t,
∫
R
f1(t, y , u)m2

t (dy , du)

)
,

almost everywhere on [0,T ], and

g2
(∫

[0,T ]×R
g1(s, y)µ1(ds, dy)

)
= g2

(∫
[0,T ]×R

g1(s, y)µ2(ds, dy)

)
.

In particular they lead to the same Nash value, that is

Γ[µ1,m1](µ1,m1) = Γ[µ2,m2](µ2,m2).
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MFG of optimal stopping: the linear programming approach

Link with the strong formulation and mixed solutions

Link with the strong formulation Assume in particular that (i) σ is
uniformly elliptic and (ii) the domain O is an open bounded domain.

Let (µ?,m?) be an LP Nash equilibrium. Consider the value function given
by

v?(t, x) = sup
τ∈Tt

E
[∫ τ∧τ t,x

O

t
f
(
s,X t,x

s ,m?
s
)
ds + g

(
τ ∧ τ t,x

O ,X t,x
τ∧τ t,x
O
, µ?

)]
,

(4)
where (t, x) ∈ [0,T ]× R, τ t,x ,m?,α

O := inf
{
s ≥ t : X t,x

s /∈ O
}
.
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MFG of optimal stopping: the linear programming approach

Link with the strong formulation and mixed solutions

Link with the strong formulation: We have∫
O
v?(0, x)m∗0(dx) = Γ[µ?,m?](µ?,m?).
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MFG of optimal stopping: the linear programming approach

Link with the strong formulation and mixed solutions
Link with mixed solutions We assume here for simplicity g = 0. We obtain
that (v?,m?) is a solution of the coupled system of equations
(a) ∫

S
f (t, x ,m?

t )m?
t (dx)dt = 0,

with S? := {(t, x) ∈ [0,T ]×O : v?(t, x) = 0}.
(b) For all C∞ functions φ such that supp(φ) ⊂ C?, the following holds∫

O
φ(0, x)m∗0(dx) +

∫ T

0

∫
O

(
∂φ

∂t + Lφ
)

(t, x ,m?
t )m?

t (dx)dt = 0,

where C? := ([0,T ]×O) \ S?.
(c)

min(v?(t, x),− ∂

∂t v
?(t, x)− Lv?(t, x)− f (t, x ,m?)) = 0,

for (t, x) ∈ [0,T ]×O and with terminal and boundary conditions
v?(T , x) = 0; v?(t, x) = 0, t ∈ [0,T ], x ∈ ∂O.
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MFG of optimal stopping: the linear programming approach

Numerical algorithm

State of the art

Several numerical algorithms have been proposed in the literature in
the case of regular control (without absorption) , using analytic
and probabilistic approaches (e.g. Achdou, Guéant, Laurière,
Chassagneux, Crisan, Delarue). Another method, based on the
fictitious play algorithm (learning procedure) has been introduced by
Cardaliaguet-Hadikhanloo in the context of MFG of controls.
Very few algorithms in the case of MFG of optimal stopping:
Bouveret-D.-Tankov (potential games) and Bertucci (non-potential
games, under a strict monotoniciy condition).
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MFG of optimal stopping: the linear programming approach

Numerical algorithm
Linear programming fictious play algorithm The MFG problem is
solved iteratively using the following algorithm
(i) Choose starting point (m̄0, µ̄0) ∈ R
(ii) For n = 0, . . . ,Niter − 1

Compute the best response

(µn+1,mn+1) = arg max
(µ,m)∈R

Γ[µ̄n, m̄n](µ,m).

Update the measures:

(µ̄(n+1), m̄(n+1)) :=
n

n + 1 (µ̄n, m̄n) +
1

n + 1 (µ(n+1),m(n+1))

=
1

n + 1

n+1∑
l=1

(µ(l),m(l)).

To assess convergence, we monitor the "exploitability":

E((µ̄n, m̄n)) := max
(µ,m)∈R

Γ[µ̄n, m̄n](µ,m)− Γ[µ̄n, m̄n](µ̄n, m̄n).
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MFG of optimal stopping: the linear programming approach

Numerical algorithm

Convergence Assume that
The conditions to have existence of an equilibrium are satisfied
f satisfies the Lasry-Lions monotonicity condition with respect to m
argmax(µ′,m′)∈R

∫ T
0
∫

Ω f (t, x ,m)m′t(dx)dt +
∫ T
0
∫

Ω g(t, x , µ)µ′t(dx)dt
is unique up to dt-almost everywhere equivalence.

Theorem
Under the above assumption, the sequence (µ̄(n), m̄(n))n≥1 converges to
the unique MFG equilibrium in the topology τW

2 ⊗ τM
2 .

Here, τW
p is the weak topology with respect to conttinous functions with

p-growth and τM
p is the topology of convergence in measure on

Mp([0,T ],Psub
p (Ō)).
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Application to an entry and exit game for electricity markets

Outline

1 Mean-field games: an introduction

2 MFG of optimal stopping: the linear programming approach

3 Application to an entry and exit game for electricity markets

4 Control/stopping mean-field games: the linear programming approach
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Application to an entry and exit game for electricity markets

Entry/exit model for electricity markets

Application: entry/exit model for electricity markets
We build a stylized equilibrium model of electricity market with
conventional and renewable agents, interacting through the market
price, allowing for entry and exit decisions (2 classes of agents).
Conventional (e.g., gas) producers with fixed capacity and variable
cost, aim to exit the market at the optimal time
Renewable (e.g., wind) projects with variable capacity and zero
marginal cost aim to enter the market at the optimal time
The producers interact through the price resulting from a
demand-supply equilibrium, which determines gains from production.
Our goal: understand the effects of this interaction and of the market
mechanisms on the long-term price levels and the renewable
penetration.
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Application to an entry and exit game for electricity markets

Entry/exit model for electricity markets

Conventional producers
Each conventional producer has marginal cost function
C i

t : [0, 1]→ R. C i
t (ξ) is the unit cost of increasing capacity if

operating at ξ.
We assume

C i
t (ξ) = C i

t + c(ξ),

where C i
t is the baseline cost:

dC i
t = k(θ(t)− C i

t )dt + δ
√
C i

tdW i
t , C i

0 = ci ,

and c : [0, 1]→ R is increasing smooth with c(0) = 0.
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Application to an entry and exit game for electricity markets

Entry-exit model for electricity markets

Conventional producers
I By maximizing its profit per unit, for a given price p, the producer

offers fraction F (p − C i
t ) of its capacity, where F = c−1.

I Gain of the producer at price level p is G(p − C i
t ), where

G(x) =

∫ x

0
F (z)dz , x ≥ 0, G(x) = 0, x < 0.
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Application to an entry and exit game for electricity markets

Entry-exit model for electricity markets

Conventional producers
I Producer i aims to exit the market at the optimal time τi , where the

optimization problem is

max
τ

E
[∫ T∧τ

0
e−ρt(G(Pt − C i

t )− κC )dt + KCe−(γC +ρ)τ∧T
]
,

where Pt is the electricity price, KC is the cost of assets recovered
upon exit, κC is the fixed running cost and γC is the depreciation rate.
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Application to an entry and exit game for electricity markets

Entry-exit model for electricity markets

Conventional producers
I The total conventional supply at price level p, including baseline

conventional supply, is given by∫
Ω
F (p − x)ωn

t (dx) + F0(p) =
n∑

i=1

1
nF (p − C i

t )1τ i>t + F0(p),

with ωn
t (dx) the distribution of costs of conventional producers who

have not yet exited the market, i.e.

ωn
t (dx) =

1
n

n∑
i=1

δCi
t
(dx)1τ i>t .
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Application to an entry and exit game for electricity markets

Entry/exit model for electricity markets

Renewable producers

Renewable producers aim to enter the market at the optimal time σi .
To enter they pay the cost KR after which the plant generates
S i

t ∈ [0, 1] units of electricity per unit of time at zero cost, where

dS i
t = κ̄(θ̄ − S i

t)dt + δ̄
√
S i

t(1− S i
t)dW i

t , S i
0 = si ∈ [0, 1].

The renewable producers always bid their full intermittent capacity
and solve:

max
σ

E
[∫ T

σ∧T
e−ρt(PtS i

t − κR)dt − KRe−ρσi∧T + KRe−ρT−γR (T−σ∧T )

]
,

where KR is the fixed cost, κR is the running cost and γR is the
depreciation rate.
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Application to an entry and exit game for electricity markets

Entry-exit model for electricity markets

Renewable producers

I We denote by ηn
t (dx) the distribution of output of renewable

producers who have entered the market :

ηn
t (dx) =

1
n

n∑
i=1

δS i
t
(dx)1σi≤t .

I The total renewable supply at time t is given by Rn
t =

∫ 1
0 xηn

t (dx).
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Application to an entry and exit game for electricity markets

Entry/exit model for electricity markets

Price formation

Agents are coupled through the market price, by matching exogenous
demand process Dt , to the aggregate supply function.

Pt := inf{P : (Dt − Rn
t )+ ≤

∫
Ω
F (P − x)ωn

t (dx) + F0(p)} ∧ P,

where P is the cap in the market.
When cap P is reached, demand is not entirely satisfied by producers.
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Application to an entry and exit game for electricity markets

Entry/exit model for electricity markets

Mathematical approach and results: MFG of optimal stopping, for
which we use the linear programming formulation.

The electricity market example requires extra mathematical work: two
types of agents and interaction through the price (the price functional
is highly irregular).
We prove existence of Nash equilibrium and uniqueness of equilibrium
price process.
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Application to an entry and exit game for electricity markets

Numerical illustration: demand projections

2018 2020 2022 2024 2026 2028 2030 2032

30

35

40

45

50
Electricity demand projections, GW

Total peak demand
Total off-peak demand

We distinguish peak / off-peak price/demand for more realistic projections.
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Application to an entry and exit game for electricity markets

Numerical illustration: capacity

2018 2021 2024 2027 2030 2033 2036

15
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35

Conventional capacity, GW

Baseline
Scenario 1
Scenario 2

2018 2021 2024 2027 2030 2033 2036
35
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50

55
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65

70

75
Renewable capacity, GW

Baseline
Scenario 1
Scenario 2

Conventional / renewable capacity evolution in three scenarios.
Baseline: costs estimated for UK market, no subsidy
Scenario 1: 30% renewable subsidy.
Scenario 2: renewable subsidy + a mechanism to keep conventional
producers in the market.
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Application to an entry and exit game for electricity markets

Numerical illustration: price evolution
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Base price, GBP/MWh

Baseline
Scenario 1
Scenario 2
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Application to an entry and exit game for electricity markets

Entry-exit game for electricity markets

Extended model

I We consider a discrete-time version of the previous model and add a
random carbon price. Study the impact on the pace of
decarbonization of the electricity industry.

I Mathematical point of view: MFG of optimal stopping with common
noise
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Application to an entry and exit game for electricity markets

Entry-exit game for electricity markets

Extended model

I Conventional producers 7→ Stochastic baseline cost 7→ decide when to
exit the market

I Renewable producers 7→ Stochastic capacity factor 7→ decide when to
enter the market.

I Carbon price impacts the cost of the conventional producers and the
demand.

I Supplies from conventional and renewable producers = Demand 7→
Electricity price.

I The optimization problems are coupled thorugh the electricity price
7→ Non cooperative game.

I We look for Nash equilibria.
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Application to an entry and exit game for electricity markets

Entry-exit game for electricity markets

Extended model

I The demand process is given by

Dt = d(t) + β(Zt − Z0),

where
d(t) is a determistic function
β ≥ 0: carbon price increases imply that carbon-intensive sectors of the
industry are forced to electrify and contribute to electricity demand.

I The marginal unit cost of conventional producer i is given by

C i
t (ξ) = C i

t + β̃Zt + c(ξ),

where
β̃ ≥ 0 represents the emission intensity
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Application to an entry and exit game for electricity markets

Entry-exit game for electricity markets

MFG for energy transition without common noise vs. with common noise
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Application to an entry and exit game for electricity markets

Additional developments

• We develop a discrete time optimal stopping MFG model which
incorporates (possibly non-markovian) common noise and partial
information

Existence of a strong equilibrium
Link between occupation measures and randomized stopping times and
minimality property of the of the set of admissible measures
Construction of an approximate Nash equilibria for games with finite
number of players

• The theory is applied to the previous model by incorporating common
random shocks which affect the carbon price and the electricity
demand. The shocks depend on a macroeconomic scenario which is
not fully revealed to the agents
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Control/stopping mean-field games: the linear programming
approach

Outline

1 Mean-field games: an introduction

2 MFG of optimal stopping: the linear programming approach
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4 Control/stopping mean-field games: the linear programming approach
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Control/stopping mean-field games: the linear programming
approach

Control/stopping MFG

N-players game problem

Consider N agents X i , i = 1, . . . ,N with dynamics

dX i
t = b(t,X i

t ,mn
t , α

i
t)dt + σ(t,X i

t ,mn
t , α

i
t)dW i

t , X i
0 ∈ R,

where W i , i = 1, . . . ,N are independent and

mn
t (dx , da) =

1
n

N∑
k=1

δ(Xk
t ,α

k
t )(dx , da)1t≤τk ,

with (τk , αk) a stopping time/regular control chosen by the player k.

The control processes α take values in a compact set A ⊂ R.
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Control/stopping mean-field games: the linear programming
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Control/stopping mean-field games: the linear programming
approach

Control/stopping MFG

N-players game problem

Each agent aims to solve the following mixed control/optimal
stopping problem:

sup
τ,α

E
[∫ τ

0
f
(
t,X k

t ,mn
t , α

k
t

)
dt + g

(
τ,X k

τ , µ
n
)]

where
µn(dt, dx) =

1
n

n

k

∑
=1
δ(τk ,Xk

τ )(dt, dx).
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Control/stopping mean-field games: the linear programming
approach

Control/stopping MFG

MFG formulation

As N →∞, we expect (mN , µN) converge to deterministic limits (m, µ).

State process of the representative agent

dXα,m
t = b

(
t,Xα,m

t ,mt , αt
)
dt + σ

(
t,Xα,m

t ,mt , αt
)
dWt ,

The mixed optimal stopping/control problem for the agent takes the
form

sup
τ,α

E
[∫ τ

0
f (t,Xα,m,mt , αt) dt + g (τ,Xα,m

τ , µ)

]
(5)
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Control/stopping mean-field games: the linear programming
approach

Control/stopping MFG

Given the solution (τµ,m, αµ,m) of the problem (5) for the agent
facing a mean-field (µ, (mt)t∈[0,T ]), find (µ, (mt)t∈[0,T ]) such that

mt(B) = P
[
(Xαµ,m,m

t , αµ,mt ) ∈ B, t ≤ τµ,m
]
,B ∈ B(R×A), t ∈ [0,T ],

(6)
and

µ = L
(
τµ,m,Xαµ,m,m

τµ,m

)
. (7)

Solution of the control/optimal stopping MFG: fixed point of (6)− (7).
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Control/stopping mean-field games: the linear programming
approach

MFG LP formulation
Fix a pair (µ̄, m̄).
• Define R[m̄] as the set of pairs (µ,m), such that for all

u ∈ C1,2
b ([0,T ]× R),∫

[0,T ]×R
u(t, x)µ(dt, dx) =

∫
R
u(0, x)m∗0(dx)

+

∫ T

0

∫
R×A

(∂tu + Lu) (t, x , m̄t , a)mt(dx , da)dt,

Lu(t, x , m̄t , a) = b(t, x , m̄t , a)∂xu(t, x) +
σ2

2 (t, x , m̄t , a)∂xxu(t, x).

• Let Γ[µ̄, m̄] : P([0,T ]× R)× V → R be defined by

Γ[µ̄, m̄](µ,m) =

∫ T

0

∫
R×A

f (t, x , m̄t , a)mt(dx , da)dt

+

∫
[0,T ]×R

g(t, x , µ̄)µ(dt, dx).
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Control/stopping mean-field games: the linear programming
approach

MFG LP formulation

We say that (µ?,m?) is an LP MFG Nash equilibrium if
(µ?,m?) ∈ R[m?] and for all (µ,m) ∈ R[m?],

Γ[µ?,m?](µ,m) ≤ Γ[µ?,m?](µ?,m?).

The real number Γ[µ?,m?](µ?,m?) is called Nash value.
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Control/stopping mean-field games: the linear programming
approach

Existence of LP MFG equilibria

One can construct a space R0 with good mathematical properties
such that all the sets R[m̄] are included in it.
We introduce the set valued map R? : R0 → 2R0 as

R?(µ̄, m̄) = R[m̄].

Define Θ : R0 → 2R0 as

Θ(µ̄, m̄) = argmax
(µ,m)∈R?(µ̄,m̄)

Γ[µ̄, m̄](µ,m).

⇒ the set of Nash equilibria coincides with the set of fixed points of the
set-valued mapping Θ
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Control/stopping mean-field games: the linear programming
approach

Existence of LP MFG equilibria

Theorem
The set of LP MFG Nash equilibria is compact and nonempty.

(1) Prove that the set-valued mapping R? is continuous in the sense of
set-valued mappings (lower and upper hemicontinuous)

(2) By Berge Maximum Theorem, get that the set valued mapping Θ is
upper hemicontinuous and has nonempty compact values

(3) Apply Kakutani-Fan-Glicksberg Theorem to get the existence of an
equilibrium.
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Control/stopping mean-field games: the linear programming
approach

Existence of LP MFG equilibria

(1) By the disintegration theorem, for each (mt)t∈[0,T ] ∈ V , there exists a
mapping νt,x : [0,T ]× R→ P(A) such that for each B ∈ B(A), the
function (t, x) 7→ νt,x (B) is B([0,T ]× R)-measurable, and

mt(dx , da)dt = νt,x (da)mt(dx ,A)dt,

where mt(dx ,A) :=
∫

A mt(dx , da). (νt,x (·)) is called Markovian
relaxed control .

(2) MFG LP equilibria taking the form mt(dx , da) = δα(t,x)(da)mt(dx ,A)
for some measurable function α : [0,T ]× R→ A are called strict
control MFG equilibria.

Under the convexity assumption of the set K [m](t, x) :=
{(b(t, x ,mt , a), σ2(t, x ,mt , a), z) : a ∈ A, z ≤ f (t, x ,mt , a)}, we get the
existence of a strict control LP MFG equilibrium.
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Control/stopping mean-field games: the linear programming
approach

Control/stopping MFG

Results
• Develop the linear programming approach for the general case of

mixed stochastic control and optimal stopping and coefficients (b, σ)
which depend on the measure.
• Develop fictious linear programming algorithm for MFG with pure
control and absorption
• Establish the link between the existence of an LP MFG Nash

equilibrium and the existence of MFG Nash equilibrium via the
controlled/stopped martingale problem (used before in the case
when there is only control).
• Establish the link with the PDE approach.
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Control/stopping mean-field games: the linear programming
approach

Thank you for your attention!
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