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Introduction



Basic facts (I)

▶ Exact simulation is a methodology for simulating stochastic

processes which avoids the bias introduced by time discretization

into the simulation output;

▶ It is useful since when using time discretization it is not possible to

determine a priori the number of time steps needed to reduce the

discretization bias to an acceptable level;

▶ Since the bias is unknown, the standard error may be a poor estimate

of the actual error, and valid confidence intervals are not available.
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Basic facts (II)

• Since the seminal work of Broadie and Kaya (2006, OR), exact

simulation of stochastic volatility models has become a fundamental

topic in computational finance;

• Exact simulation of stochastic volatility models relies on

nested-conditional factorization: suppose to have two dependent

random variables X and Y and one is interested to obtain a joint

sample (X ,Y ), one simulates Y first and then X conditionally on

Y . Various stochastic volatility models can be simulated exactly by

choosing appropriately X and Y ;

• The main advantage of exact simulation is that the convergence rate

for exact simulation schemes is O(s−1/2), where s is the total

computational budget, whereas the convergence rate for

discretization methods is slower. For example, for the Euler scheme

it is O(s−1/3).
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Literature Review (I)

Consider a general stochastic volatility model

dSt = rStdt + σS(St ,Vt , t)(ρdBt +
√

1− ρ2dWt)

dVt = µV (Vt , t)dt + σV (Vt , t)dBt

where Bt and Wt are independent standard Brownian motions, r is the

risk-less rate and ρ ∈ [−1, 1].

Model σS (St , Vt , t) µV (Vt , t) σV (Vt , t) Y X

Heston St
√

Vt k(θ − Vt ) σ
√

Vt VT
∫T
0 Vs ds

3/2 St
b√
Vt

k(θ − Vt ) σ
√

Vt VT
∫T
0

1
Vs

ds

SABR S
β
t
√

Vt σ2Vt 2σVt VT
∫T
0 Vs ds

4/2 St

(
a
√

Vt + b√
Vt

)
k(θ − Vt ) σ

√
Vt VT log ST

SV-OU St
√

Vt 2k

(
σ2

2k
+ θ

√
Vt − Vt

)
2σ
√

Vt

(
VT ,

∫T
0

√
Vs ds

) ∫T
0 Vs ds

HW-SV St
√

Vt ηVt σVt VT
∫T
0

√
Vs ds

Notes. Relevant literature: Broadie and Kaya (2006, OR), Baldeaux (2012, IJTAF),

Cai et al. (2017, OR), Grasselli (2017, MaFi), Li and Wu (2019, EJOR).
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Literature review (II)

• In the case of the Hull and White Stochastic Volatility (HW-SV)

model (Hull and White, 1987, JoF) the characteristic function of the

log-asset price is unknown;

• This precludes the possibility of pricing European options through

standard Fourier inversion techniques (e.g. FFT and COS methods);

• Pricing can be done by simulating discrete approximations, making

the procedure time-consuming and introducing noticeable bias;

• Ackerer and Filipovic (2020, MaFi) find that the erratic behavior of

the moments renders polynomial option pricing techniques more

delicate to apply with respect to more standard models;

• Zeng et al. (2023, MaFi) provide a general framework for the exact

simulation of stochastic volatility models, but conclude that the

HW-SV model can not be simulated exactly through their method,

and that only approximations are possible.
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Main Contributions

• We extend the literature on the exact simulation of stochastic

volatility models by providing an exact simulation scheme for the

HW-SV model;

• Laplace transform inversion is performed through a new

methodology based on the Fourier-cosine (COS) method (Fang and

Oosterlee, 2008, SISC);

• We propose a conditional COS formula for pricing European options,

which is useful in reducing the variance of the Monte Carlo

estimator of the option price and the computing time;

• Through a second variant of our simulation scheme, we derive

unbiased estimates for the Greeks of European call options;
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Exact Simulation Scheme



HW-SV: conditional distribution of the log-price

Given a final date T > 0, the conditional log-asset price is given as

follows: (
lnST

∣∣∣VT ,

∫ T

0

Vsds,

∫ T

0

√
Vsds,V0,S0

)
∼ N (m, s2) (1)

where

m = ln(S0) + rT −
∫ T

0
Vsds

2
+

ρ

v

(√
VT −

√
V0 −

(
η − v2

)
2

∫ T

0

√
Vsds

)

VT = V0 exp

((
η − σ2

2

)
T + σBT

)
, s2 = (1− ρ2)

∫ T

0

Vsds, v =
σ

2
.

Our benchmark is given as follows. First, we divide the time interval

[0,T ] into n equispaced points of length T/n. Then, we simulate

trajectories of the variance exactly. Finally, we approximate the

integrated variance and integrated volatilities using the trapezoidal rule

and the asset price from (1).
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Main idea (I)

The proposed exact simulation algorithm relies on a conditional nested

factorization approach and can be summarized in three main steps:

• Step 1: simulate VT

• Step 2: simulate
(

1∫ T
0

√
Vsds

∣∣VT

)
and recover

(∫ T

0

√
Vsds

∣∣VT

)
by

taking the reciprocal

• Step 3: simulate
(
XT

∣∣ ∫ T

0

√
Vsds,VT

)
, where XT := log(ST/S0)

The difference with respect to the approach in Zeng et al. (2023, MaFi)

is that they bypass Step 2 and attempt sampling directly
(
XT

∣∣VT

)
which

is not possible since the relevant Laplace transform is unknown, while the

Laplace transform of
(
XT

∣∣ ∫ T

0

√
Vsds,VT

)
is known (as we illustrate

later).
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Main idea (II)

▶ Step 1 is straightforward since V is lognormally distributed

▶ Step 2 is implemented by numerically inverting the Laplace

transform of
(

1∫ T
0

√
Vsds

∣∣VT

)
to the cumulative distribution function

and then sampling using inverse transform method

▶ Step 3 is implemented by numerically inverting the Laplace

transform of
(
XT |

∫ T

0

√
Vsds,VT

)
to the cumulative distribution

function and then sampling using inverse transform method.
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L1(u): Laplace transform of
(

1∫ T
0

√
Vsds

∣∣∣VT

)

Proposition
Given u > 0, we have

L1(u) := E

[
exp

(
− u∫ T

0

√
Vsds

)∣∣∣VT

]

= exp

−
φ
(

1
4 log

VT

V0
, uσ2

16
√
V0

)2
−
(

1
4 log

VT

V0

)2
T σ2

8

 (2)

where φ(x , λ) = arcosh(λe−x + cosh(x))
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L2(u): Laplace transform of
(∫ T

0
Vsds|

∫ T

0

√
Vsds,VT

)
Proposition
Given u > 0, we have

L2(u) := E

[
exp

(
−u

∫ T

0
Vsds

) ∣∣∣ ∫ T

0

√
Vsds,VT

]
=
θ(ϕ(v⋆, x⋆,

√
λ⋆), t⋆/4)

ψ
(µ⋆)
t⋆ (v⋆, x⋆)

eµ
⋆x⋆−(µ⋆)2t⋆/2×

×
√
λ⋆

4 sinh(
√
λ⋆v⋆/2)

exp
(
−
√
λ⋆(1 + ex

⋆
) coth(

√
λ⋆v⋆/2)

)
(3)

where

ϕ(v , x , λ) =
2λ exp(x/2)

sinh(λv/2)
, ψ

(µ)
t (v , x) =

1

2v
eµx−µ2t/2 exp

(
−
2(1 + x)

v

)
θ(4ex/2/v , t/4)

θ(r , t) =
r

√
2π3t

∫ ∞

0
e−

ξ2

2t e−r cosh(ξ) sinh(ξ) sin

(
πξ

t

)
dξ

and λ⋆ = 8uV0
σ2 , t⋆ = T σ2

4
, x⋆ = 1

2
log VT

V0
and v⋆ =

∫ T
0

√
Vsds√

V0
4
σ2

, µ⋆ = 2η
σ2 − 1
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L3(u): Laplace transform of
(
XT |VT ,

∫ T

0

√
Vsds

)

Proposition
Given u > 0, we have

L3(u) := E

[
e−uXT

∣∣∣VT ,

∫ T

0

√
Vsds

]

= exp

[
−u

(
rT +

ρ

v

(√
VT −

√
V0 −

1

2
(η − v2)

∫ T

0

√
Vsds

))]

× L2

(
−
(
1

2
+

1

2
u(1− ρ2)

))
(4)
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Random Sampling using COS

• The CF are given by Fj(u) := Lj(−iu), for j = {1, 2, 3}

• According to the COS method, the pdf of a generic r.v. is given as

fj(y) =
∞∑
k=1

Fk cos

(
kπ

y − a

b − a

)
+

1

b − a
≈

N−1∑
k=1

Fk cos

(
kπ

y − a

b − a

)
+

1

b − a

where Fk = 2
b−aRe

(
Fj

(
kπ
b−a

)
· exp

(
−i kaπb−a

))
and [a, b] ∈ D is

chosen such that: ∫ b

a

e iuy fj(y)dy ≈
∫
D
e iuy fj(y)dy (5)

• We compute the cdf from the pdf:

cj(y) ≈
∫ y

a

fj(h)dh =
y − a

b − a

N−1∑
k=1

Fk

(b − a) sin
(

πk(a−y)
a−b

)
πk

(6)

• We sample U ∼ U(0, 1) and find y such that cj(y) = U using root

finding algorithms.
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Control of the error: Truncation range computation (I)

• If the interval [a, b] is too wide, then one needs a larger N to get

sufficient accuracy; if the interval is too tight, the approximation in

(5) may be inaccurate

• Since XT is defined on R, for
(
XT |

∫ T

0

√
Vsds,VT

)
we can choose a

and b according to Fang and Osterlee (2008):

a = c̃1 − 12
√

c̃2, b = c̃1 + 12
√
c̃2 (7)

where c̃j denotes the j-th cumulant of the risk–neutral distribution

of log–returns

• Since
(∫ T

0

√
Vsds|VT

)
∈ R+, the choice is based on the first two

integer conditional moments of
(

1∫ T
0

√
Vsds

|VT

)
• In both cases, we can use the results in Kyriakou et al. (2023, OR)

to compute the moments of some unknown distribution given the

knowledge of the Laplace transform
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• If the interval [a, b] is too wide, then one needs a larger N to get

sufficient accuracy; if the interval is too tight, the approximation in

(5) may be inaccurate

• Since XT is defined on R, for
(
XT |

∫ T

0

√
Vsds,VT

)
we can choose a

and b according to Fang and Osterlee (2008):

a = c̃1 − 12
√

c̃2, b = c̃1 + 12
√
c̃2 (7)

where c̃j denotes the j-th cumulant of the risk–neutral distribution

of log–returns

• Since
(∫ T
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)
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to compute the moments of some unknown distribution given the
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Control of the error: Truncation range computation (II)

• Since
√
VT is a geometric Brownian motion, then its time integral

has an unknown distribution

• However, from Asian options literature we know that the infinite

sum of correlated lognormal random variables is distributed as a

reciprocal Gamma. Therefore, we suggest to approximate(
1∫ T

0

√
Vsds

∣∣∣VT

)
with a moment-matched Gamma distribution

• Hence, we choose a and b in (5) in such a way that the probability

of G ≤ a is 10−12 and probability that G ≤ b is 1− 10−12

• When the truncation range is computed accurately, the overall error

is controlled by the parameter N
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Control of the error: Truncation range computation (III)

Figure 1: Truncation range and cumulative distribution function of

(
1∫ T

0

√
Vsds

∣∣∣VT

)
.
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Notes. Cumulative distribution functions of the true distribution (blue line) and the

moment–matched Gamma distribution (red line) for three different values of VT .

x–axis is truncated at a and b.
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Control of the error: Convergence to the true option price

Figure 2: Option price convergence (blue) and runtime (red).
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Numerical results: Exact simulation vs benchmark

Figure 3: Speed-accuracy comparisons of our exact simulation scheme and

competent benchmark for different parameter sets: the case of European plain vanilla

option.
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Notes. Our exact simulation algorithm: plots with red diamond markers; benchmark:

plots with blue circle markers. All computing times are expressed in seconds.
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Option pricing and Greeks

evaluation



Option Pricing using Conditional COS

Instead of simulating
(
XT |

∫ T

0

√
Vsds,VT

)
, we can compute directly the

conditional option price, i.e. the option price conditional on the random

realization of
(∫ T

0

√
Vsds,VT

)
:

C ≈ e−rT 1

b − a

∫ b

log

(
K
S0

)(S0e
y − K)dy + e−rT

N−1∑
k=1

Fk

∫ b

log

(
K
S0

)(S0e
y − K) cos

(
kπ

y − a

b − a

)
dy

=
e−rT

b − a

(
−(b + 1)K + ebS0 + K log

(
K

S0

))
+

N−1∑
k=1

Fk

e−rT
(
−(b + 1)K + ebS0 + K log

(
K
S0

))
b − a

+ (a − b)e−rT

(
−ebS0((b − a) cos(πk) + πk sin(πk)) + K(b − a) cos(ζ) + πkK sin(ζ)

(a − b)2 + π2k2
+

+
K(sin(πk) − sin(ζ))

πk

)
, (8)

where ζ =
πk

(
a−log

(
K
S0

))
a−b .
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Greeks evaluation using Conditional COS

In the same way, we can also compute Greeks. For example, the ”Delta”
is computed according to

∆ =
∂C

∂S0
=

e−rT
(
eb − K

S0

)
b − a

+

N−1∑
k=1

Fk (a − b)e−rT×

×

 π2k2K cos(ζ)
S0(a−b) − πkK(b−a) sin(ζ)

S0(a−b) − eb((b − a) cos(πk) + πk sin(πk))

(a − b)2 + π2k2
−

K cos(ζ)

S0(a − b)

 . (9)

where ζ =
πk

(
a−log

(
K
S0

))
a−b .
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Computational advantages of Conditional COS

▶ This approach (which we label conditional COS) presents an

important advantage with respect to standard exact simulation

algorithm: since we don’t sample XT , we remove the additional

Monte Carlo variance due to Step 3.

▶ It can be used as a variance reduction technique when the purpose is

to price European options, allowing to obtain unbiased estimates

with tight confidence interval at a small computational cost. In the

course of our numerical studies, we find that the variance of the

Monte Carlo estimator is reduced by roughly 93-98%.

▶ Further, we observe a reduction of the running time because we can

directly price the option without simulating
(
XT |

∫ T

0

√
Vsds,VT

)
,

avoiding root finding algorithms. For example, for 1024× 104

simulations the reduction is approximately 24%.
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Numerical results: conditional COS vs benchmark

Figure 4: Speed-accuracy comparisons of conditional COS method and competent

benchmark for different parameter sets: the case of European plain vanilla option.
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Notes. Conditional COS: plots with red diamond markers; benchmarks: plots with

blue circle markers. All computing times are expressed in seconds. 22/23



Conclusions



Concluding Remarks

• We develop an exact simulation scheme for the HW-SV model;

• We derive analytic expressions for some relevant Laplace transforms,

and then we propose a new methodology for their numerical

inversion based on the COS method;

• We propose efficient methodologies for computing the truncation

range for the domain of the various random variables involved based

on their conditional moments, which is important for properly

controlling the error;

• We propose some variants to the exact simulation scheme that allow

to reduce the computational time and the variance of the Monte

Carlo estimator when computing European call option prices and

Greeks;

• The proposed approaches present a faster convergence rate of the

Root Mean Squared Error (RMSE) with respect to the benchmark.
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Thank you!
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