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Market Impact of Order Execution

@ Market impact: Initiating a buy order will drive the price up and
initiating a sell order will drive the price down

@ Brokers often face the problem of liquidating a large position within a
relatively short period of time on clients’ behalf
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Splitting order

@ Splitting a metaorder into a series of child orders
» To reduce market impact: trading slowly

» But a longer execution period incurs an extra exposure to
the risk of price movement: trading quickly

@ Execution strategy: A method to split the order: a trading curve from
qo to qT1
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Figure: Execution Strategies
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Optimal Execution with Reservation Strategy

Reservation Strategy

@ In short, the broker has a "prior preference” before trading, described
by a reservation strategy process

@ Intuitively, if there is no limitation, the broker will follow the
reservation strategy
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Optimal Execution with Reservation Strategy

Reservation Strategy

@ Many strategies also consider trade-cost risk with different benchmark
strategies (Cheng, Guo, and Wang 2024)
> IS orders: benchmarked to a block trading at the beginning

» TC orders: benchmarked to a block trading at the end of the trading

day

» VWAP/TWAP orders: following the market flow
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Optimal Execution with Reservation Strategy

Reservation Strategy
@ Many strategies also consider trade-cost risk with different benchmark
strategies (Cheng, Guo, and Wang 2024)
> IS orders: benchmarked to a block trading at the beginning
» TC orders: benchmarked to a block trading at the end of the trading

day
» VWAP/TWAP orders: following the market flow

Frei and Westray 2015 propose a Gamma bridge as the relative
volume process (reservation strategy), where the associated stochastic

control problem is given by

T
minE Fq§+/ Ao?(qr — 7e)° +n2 | dt] (1)
vt ——
0 distance
s.t. go =1, dgr = vidt, (2)

where ~; is a Gamma bridge, g; is the inventory process and v; is the
trading velocity. In this model, the optimal trading curve qj is also

stochastic.
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Model Setup

o Consider the multi-asset optimal execution problem: from qg to g1
during [0, T]

» g; € RY the inventory process
» R, € RY the reservation strategy process

@ We use dynamic relative entropy (or KL divergence) to describe the
"distance” between g and R:

» Suppose the measures of g; and R; are respectively P; and Q;
» KL divergence

D, (IP’||Q)-—/ lo, au” F(dxdy)
KL\t | Qe) == - ngQ/J Y,

@ More precisely, we have the Schrédinger Bridge Problem
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Schrodinger Bridge Problem

o Let £ = N(po,Xo) and & = N (1, X1) be given Gaussian measures

@ The Schrodinger Bridge Problem refers to the constrained dynamic
entropy-regularized problem over all stochastic processes P (Chen,
Georgiou, and Pavon 2021, Bunne et al. 2023)

i Dk, (P
min_, KL(Pe]|Qe)

Po=¢,P1=

e ¢ and & are the (empirical) marginal distributions of a complicated
continuous-time dynamics observed at the starting and end times

@ Q is a "prior process” representing our belief of the dynamics before
observing any data.
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Model Setup

Schrodinger Bridge Problem
e Consider the Schrodinger Bridge Problem

min_ Dic (P12 ()

Po=¢,P1=
We take Q; as the measure of a linear SDE
dR; = AtRdt + BidW,.
@ Denote 71 := exp (fot Asds) and suppose the mean function of R; is
E[Re|Ro] = 7¢Ro =: n(t)

and the covariance function is given by (¢ > t)
t
Cov[R:, Ry | Yo] = <m / rfsgds) I =: k(t, V).
0
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Model Setup

Parameters

Set

Pt =
fo 7'5233(15

Pi = f(rZ1 + 7 Cy.), Qe = —r(RXo + riCo.),
St:Pt_QI (Atl‘i(tt(l—Pt gzpt)
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Optimal Solution
By using the results in Bunne et al. 2023, we may solve the Schrddinger
Bridge Problem:

Proposition

1. The solution to the Schrédinger Bridge Problem is a Markov Gaussian
process whose marginal variable q; ~ N (ut, Xt), where

e = Felbo + repe,

2= Ft220 + I’%Zl + rtr_t(Cg* + C;*) =+ H(t7 t)(l - pt)l

2. g: admits a closed-form representation as the SDE

dge = (StTZ?l(q — ) + u't) dt+ BrdW:.
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Equivalent Stochastic Control Problem

Equivalent Stochastic Control Problem

Chen, Georgiou, and Pavon 2015 shows that the Gaussian Schrodinger
bridge problem (3) is equivalent to the following stochastic control

problem:
minE [/ Hutﬂzdt] (4)

s.t. dXi_L == (AtXt + Ut) dt-l‘ Btd Wt, (5)
xo ~ N(po, Xo), x1 ~ N(u1,X1). (6)

Note that the dynamic of R; is given by

th == Athdt+ Btd Wt7
so R; is the "uncontrolled” process.
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Equivalent Stochastic Control Problem

Almgren-Chriss Framework with Execution Risk

@ While executing a sequence of pre-scheduled orders, the orders in the
sequence may not be fully executed

@ Carmona and Leal 2023 show that there exists a Brownian component
in the inventory processes of individual traders by statistical tests

@ Cheng, Di Giacinto, and Wang 2017 assume that

dg: = vidt + modZ;
——

execution risk

instead of v, = %
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Equivalent Stochastic Control Problem

Almgren-Chriss Framework with Execution Risk

Example

The risk-neutral stochastic control problem in Cheng, Di Giacinto, and
Wang 2017 is given by

1
minE [/ vfdt] ) (7)

(ve) 0
s.t. dXt = tht+ mod Wt, (8)
xo=X, xg =0. (9)

The stochastic control problem is equivalent to the Schrédinger Bridge
Problem, with reservation strategy

th = mod Wt.
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State Penalty

To introduce the state penalty, we generalize a proposition in Chen and
Georgiou 2015:

Proposition

Denote xi by the optimal solution to the stochastic control problem with
F— oo:

r(mr)1IE [)J Fxq +/ (X, Qexe + ||ut||2) dt
s.t. dxy = (Apxe + u(t)) dt + BedWs, 0 <t <1, xg = X.

Suppose x; is the solution to the SDE

dxe = Ao(t)xedt + BedW,, 0 < t< 1, xg = X,

where Ay solves the ODE Ag + AJAO —A-ATA-Q=0.
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State Penalty

Proposition
Furthermore, suppose x;* is the optimal solution to the stochastic control
problem with F — oo

minE [% Fxq +/ Hutszt] (12)

(ue)

s.t. dxy = (Ao(t)xt + up) dt + BidW,, 0 <t <1, xo =X (13)

Then xi, xi* and x¢{{x1 = 0} have the same distribution. Moreover, they
solve the Schrédinger Bridge Problem, with reservation strategy given by

th = AO(t)tht+ Btth, 0<t< 1, Ro = X0.
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Fixed-point Constraint

Almgren-Chriss Framework with Execution Risk

Example

The mean-quadratic variation stochastic control problem in Cheng,
Di Giacinto, and Wang 2017 is given by

) 1 )\02 5
e | [ (202 o] ()

s.t. dx; = vidt + mod W4, (15)
X0 = X, X1 = 0. (16)

The stochastic control problem is equivalent to the Schrodinger Bridge
Problem, with an OU process as reservation strategy

)\ 2
dR; = —,/%thwrmodwt.
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Fixed-point Constraint

Conclusion

@ We formulate the broker’s problem as a dynamic relative entropy
optimization problem.
@ We derive the explicit form of the Schrodinger Bridge Problem.

@ We consider the case where the density constraint is replaced by a
fixed-point constraint, and the associated state process reduces to a
pinned process, which is a generalization of the Brownian bridge to
linear systems.

@ We show that our model can cover Almgren-Chriss framework with
execution risk by setting different reservation strategies.

P.Guo (PKU) Optimal Execution with Relative Entropy 24-04-03 19/20



THANK YOU
FOR YOUR ATTENTION !

o = = E T 9Dacn




	Outline
	Optimal Execution with Reservation Strategy
	Model Setup
	Equivalent Stochastic Control Problem
	Fixed-point Constraint

