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Optimal Execution with Reservation Strategy

Market Impact of Order Execution

Market impact: Initiating a buy order will drive the price up and
initiating a sell order will drive the price down
Brokers often face the problem of liquidating a large position within a
relatively short period of time on clients’ behalf
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Optimal Execution with Reservation Strategy

Splitting order
Splitting a metaorder into a series of child orders

▶ To reduce market impact: trading slowly
▶ But a longer execution period incurs an extra exposure to

the risk of price movement: trading quickly
Execution strategy: A method to split the order: a trading curve from
q0 to qT

Figure: Execution Strategies
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Optimal Execution with Reservation Strategy

Reservation Strategy

In short, the broker has a ”prior preference” before trading, described
by a reservation strategy process
Intuitively, if there is no limitation, the broker will follow the
reservation strategy
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Optimal Execution with Reservation Strategy

Reservation Strategy
Many strategies also consider trade-cost risk with different benchmark
strategies (Cheng, Guo, and Wang 2024)

▶ IS orders: benchmarked to a block trading at the beginning
▶ TC orders: benchmarked to a block trading at the end of the trading

day
▶ VWAP/TWAP orders: following the market flow

RIS
t =

{
q0, t = 0,
0, 0 < t ≤ 1.

, RTC
t =

{
q0, 0 ≤ t < 1,
0, t = 1.

Figure: Reservation StrategiesP.Guo (PKU) Optimal Execution with Relative Entropy 24-04-03 6 / 20



Optimal Execution with Reservation Strategy

Reservation Strategy
Many strategies also consider trade-cost risk with different benchmark
strategies (Cheng, Guo, and Wang 2024)

▶ IS orders: benchmarked to a block trading at the beginning
▶ TC orders: benchmarked to a block trading at the end of the trading

day
▶ VWAP/TWAP orders: following the market flow

Frei and Westray 2015 propose a Gamma bridge as the relative
volume process (reservation strategy), where the associated stochastic
control problem is given by

min
(vt)

E

Fq2
1 +

∫ T

0

λσ2(qt − γt)
2︸ ︷︷ ︸

distance

+ηv2
t

 dt

 , (1)

s.t. q0 = 1, dqt = vtdt, (2)
where γt is a Gamma bridge, qt is the inventory process and vt is the
trading velocity. In this model, the optimal trading curve q∗t is also
stochastic.
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Model Setup

Model Setup

Consider the multi-asset optimal execution problem: from q0 to qT
during [0,T]

▶ qt ∈ Rd: the inventory process
▶ Rt ∈ Rd: the reservation strategy process

We use dynamic relative entropy (or KL divergence) to describe the
”distance” between q and R:

▶ Suppose the measures of qt and Rt are respectively Pt and Qt
▶ KL divergence

DKL(Pt||Qt) :=

∫
Rd×Rd

log
dµP

dµQµP(dxdy)

More precisely, we have the Schrödinger Bridge Problem
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Model Setup

Schrödinger Bridge Problem

Let ξ = N (µ0,Σ0) and ξ′ = N (µ1,Σ1) be given Gaussian measures
The Schrödinger Bridge Problem refers to the constrained dynamic
entropy-regularized problem over all stochastic processes Pt (Chen,
Georgiou, and Pavon 2021, Bunne et al. 2023)

min
P0=ξ,P1=ξ′

DKL(Pt||Qt)

ξ and ξ′ are the (empirical) marginal distributions of a complicated
continuous-time dynamics observed at the starting and end times
Qt is a ”prior process” representing our belief of the dynamics before
observing any data.
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Model Setup

Schrödinger Bridge Problem
Consider the Schrödinger Bridge Problem

min
P0=ξ,P1=ξ′

DKL(Pt||Qt). (3)

We take Qt as the measure of a linear SDE

dRt = AtRtdt + BtdWt.

Denote τt := exp
(∫ t

0 Asds
)

and suppose the mean function of Rt is

E[Rt|R0] = τtR0 =: η(t)

and the covariance function is given by (t′ ≥ t)

Cov[Rt,Rt′ |Y0] =

(
τtτt′

∫ t

0
τ2

s B2
s ds

)
I =: κ(t, t′)I.
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Model Setup

Parameters

Set

Dσ =

(
4Σ

1
2
0Σ1Σ

1
2
0 + σ4I

) 1
2
, Cσ =

1
2

(
Σ

1
2
0 DσΣ

− 1
2

0 − σ2I
)
,

rt =
κ(t, 1)
κ(1, 1) , r̄t = τt − rtτ1, σ∗ =

√
τ−1

1 (1, 1),

ρt =

∫ t
0 τ2

s B2
s ds∫ 1

0 τ2s B2s ds
,

Pt = ṙt(rtΣ1 + r̄tCσ∗), Qt = − ˙̄rt(r̄tΣ0 + rtCσ∗),

St = Pt − Q⊤
t +

(
Atκ(t, t)(1 − ρt)− g2

tρt
)
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Model Setup

Optimal Solution

By using the results in Bunne et al. 2023, we may solve the Schrödinger
Bridge Problem:

Proposition
1. The solution to the Schrödinger Bridge Problem is a Markov Gaussian

process whose marginal variable qt ∼ N (µt,Σt), where

µt = r̄tµ0 + rtµ1,

Σt = r̄t
2Σ0 + r2

tΣ1 + rtr̄t(Cσ∗ + C⊤
σ∗) + κ(t, t)(1 − ρt)I.

2. qt admits a closed-form representation as the SDE

dqt =
(

S⊤
t Σ

−1
t (q − µt) + µ̇t

)
dt + BtdWt.
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Equivalent Stochastic Control Problem

Equivalent Stochastic Control Problem

Chen, Georgiou, and Pavon 2015 shows that the Gaussian Schrödinger
bridge problem (3) is equivalent to the following stochastic control
problem:

min
(ut)

E
[∫ 1

0
||ut||2dt

]
(4)

s.t. dxt = (Atxt + ut) dt + BtdWt, (5)
x0 ∼ N (µ0,Σ0), x1 ∼ N (µ1,Σ1). (6)

Note that the dynamic of Rt is given by

dRt = AtRtdt + BtdWt,

so Rt is the ”uncontrolled” process.
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Equivalent Stochastic Control Problem

Almgren-Chriss Framework with Execution Risk

While executing a sequence of pre-scheduled orders, the orders in the
sequence may not be fully executed
Carmona and Leal 2023 show that there exists a Brownian component
in the inventory processes of individual traders by statistical tests
Cheng, Di Giacinto, and Wang 2017 assume that

dqt = vtdt + m0dZt︸ ︷︷ ︸
execution risk

,

instead of vt =
dqt
dt
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Equivalent Stochastic Control Problem

Almgren-Chriss Framework with Execution Risk

Example
The risk-neutral stochastic control problem in Cheng, Di Giacinto, and
Wang 2017 is given by

min
(vt)

E
[∫ 1

0
v2

t dt
]
, (7)

s.t. dxt = vtdt + m0dWt, (8)
x0 = X, x1 = 0. (9)

The stochastic control problem is equivalent to the Schrödinger Bridge
Problem, with reservation strategy

dRt = m0dWt.
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Fixed-point Constraint

State Penalty
To introduce the state penalty, we generalize a proposition in Chen and
Georgiou 2015:

Proposition
Denote x∗t by the optimal solution to the stochastic control problem with
F → ∞:

min
(ut)

E
[
x′1Fx1 +

∫ 1

0

(
x′tQtxt + ||ut||2

)
dt
]

(10)

s.t. dxt = (Atxt + u(t)) dt + BtdWt, 0 < t < 1, x0 = X. (11)

Suppose xt is the solution to the SDE

dxt = A0(t)xtdt + BtdWt, 0 < t < 1, x0 = X,

where A0 solves the ODE Ȧ0 + A⊤
0 A0 − Ȧ − A⊤A − Q = 0.
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Fixed-point Constraint

State Penalty

Proposition
Furthermore, suppose x∗∗t is the optimal solution to the stochastic control
problem with F → ∞

min
(ut)

E
[
x′1Fx1 +

∫ 1

0
||ut||2dt

]
(12)

s.t. dxt = (A0(t)xt + ut) dt + BtdWt, 0 < t < 1, x0 = X. (13)

Then x∗t , x∗∗t and xt|{x1 = 0} have the same distribution. Moreover, they
solve the Schrödinger Bridge Problem, with reservation strategy given by

dRt = A0(t)Rtdt + BtdWt, 0 < t < 1, R0 = x0.
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Fixed-point Constraint

Almgren-Chriss Framework with Execution Risk
Example
The mean-quadratic variation stochastic control problem in Cheng,
Di Giacinto, and Wang 2017 is given by

min
(vt)

E
[∫ 1

0

(
v2

t +
λσ2

η
q2

t

)
dt
]
, (14)

s.t. dxt = vtdt + m0dWt, (15)
x0 = X, x1 = 0. (16)

The stochastic control problem is equivalent to the Schrödinger Bridge
Problem, with an OU process as reservation strategy

dRt = −

√
λσ2

η
Rtdt + m0dWt.
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Fixed-point Constraint

Conclusion

We formulate the broker’s problem as a dynamic relative entropy
optimization problem.
We derive the explicit form of the Schrödinger Bridge Problem.
We consider the case where the density constraint is replaced by a
fixed-point constraint, and the associated state process reduces to a
pinned process, which is a generalization of the Brownian bridge to
linear systems.
We show that our model can cover Almgren-Chriss framework with
execution risk by setting different reservation strategies.
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Fixed-point Constraint

THANK YOU
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