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Recap: The traditional Framework of Markowitz‘ Portfolio Theory

Markowitz‘ Portfolio Theory
—
Mean-risk Model:

𝑚𝑎𝑥𝑤∈ 0,1 𝑛𝜇𝑇𝑤 − 𝑞 ⋅ 𝑤𝑇Σ𝑤,

where

• 𝜇 expected return vector

• Σ covariance matrix

• 𝑞 „risk appetite“

• 𝑤 vector of asset share such that σ𝑖=1
𝑛 𝑤𝑖 = 1.

Harry M. Markowitz: Portfolio Selection. In: Journal of Finance. 7, 1952, ISSN 

0022-1082, S. 77–91.
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Recap: Multicriteria Portfolio Optimization

Extension of Markowitz‘ Portfolio Theory
—
Multicriteria Mean-risk Model:

m𝑎𝑥
𝑤

 𝜇𝑇𝑤

m𝑖𝑛
𝑤

 𝑤𝑇Σw

𝑠. 𝑡. w ∈ [0,1]𝑛,     σ𝑖=1
𝑛 𝑤𝑖 = 1

where

• 𝜇 expected return vector

• Σ covariance matrix

• 𝑤 vector of asset share such that σ𝑖=1
𝑛 𝑤𝑖 = 1.
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Sawik, B.: "Survey of multi-objective portfolio optimization by linear and mixed integer programming", Applications of Management Science, Vol. 16, pp. 55-79 (2013). 
https://doi.org/10.1108/S0276-8976(2013)0000016007
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Multicriteria optimization is a valuable tool to model and solve real-world 

problems. A prime example is portfolio optimization.

Can we use multicriteria optimization as a decision support tool for coping 

with uncertain parameters?«

03.04.2024 © Fraunhofer ITWMPage 4



Public information

Sneak Peek: Multicriteria-Based Sensitivity Analysis of Return Parameters

Problem Outline
—
1. Expected return of assets has to be computed a priori

2. Computation based on historical, empirical data, return 

parameter is a random variable itself

3. Different ways to compute, leads to discussion between broker

Has a variation in a return parameter an 

impact on the outcome of the asset 

allocation?
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2. Computation based on historical, empirical data, return 

parameter is a random variable itself

3. Different ways to compute, leads to discussion between broker

Has a variation in a return parameter an 

impact on the outcome of the asset 

allocation?

Idea (focus on one reference portfolio and one asset):

Given 𝜇𝑚𝑖𝑛 and 𝜇𝑚𝑎𝑥 for the first asset, rewrite 𝑓𝑟𝑒𝑡𝑢𝑟𝑛 𝑤 = 𝜇𝑇𝑤:

𝑓𝑟𝑒𝑡𝑢𝑟𝑛 𝑤, λ = 

𝑖=2

𝑛

𝑤𝑖𝜇𝑖 + 𝑤1 𝜆𝜇𝑚𝑖𝑛 + 1 − 𝜆 𝜇𝑚𝑎𝑥 ,

with 𝜆 𝜖 0,1 . For 𝑊 = 𝑤 ∈ 0,1 𝑛: σ 𝑤𝑖 = 1 , solve

min
𝑤∈𝑊

𝑓 𝑤, 𝜆 =
𝑓𝑟𝑒𝑡𝑢𝑟𝑛(𝑤, 𝜆)
𝑓𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦(𝑤)

⋮

.
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Use multicriteria optimization properties and algorithms!
𝜇𝑚𝑖𝑛 𝜇𝑚𝑎𝑥

𝜇𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 2

𝜇𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝜇𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝜇𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 1 𝜇𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 2
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Multicriteria Partially-Min-Regret-Robustness for a Set of Volatility Scenarios

Problem Outline
—
1. Several scenarios for the volatility of assets are given

2. Probability of each scenario is unknown or hard to determine

3. Weighted objective function or objective function for each 

scenario is not practical

How can we find an efficient portfolio that 

performs well in all scenarios?
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Vola Crisis

Vola Normal

Vola Growth
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Recap: (Single-Objective) Robust Optimization
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Min-Max Regret Robustness

▪ Find a solution that is closest to the best solutions for every scenario m𝑖𝑛
𝑥∈𝑋

  m𝑎𝑥
𝜉∈𝑆

 𝑓 𝑥, 𝜉 − m𝑖𝑛
ො𝑥

 𝑓( ො𝑥, 𝜉)

where

▪ 𝑋 feasible set

▪ 𝑓 objective function

▪ 𝑆 scenario set

Min-Max Robustness

▪ Minimize the worst case of the objective function under all scenarios 𝜉 m𝑖𝑛
𝑥∈𝑋

  m𝑎𝑥
𝜉∈𝑆

 𝑓 𝑥, 𝜉

Give a set of scenarios S with scenarios 𝜉
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Multi-Objective Portfolio Optimization with Uncertain Volatility
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Multi-Objective Min-Max Regret Robustness

▪ Find a solution that is objective-wise closest to the 

objective‘s best solutions for every scenario

m𝑖𝑛
𝑥∈𝑋

  m𝑎𝑥
𝜉∈𝑆

  𝑟(𝑥, 𝜉) with    ri x, 𝜉 = 𝑓𝑖 𝑥, 𝜉 − m𝑖𝑛
ො𝑥

 𝑓𝑖( ො𝑥, 𝜉)

𝑠. 𝑡. 𝑥 ∈ [0,1]𝑛,     σ𝑖=1
𝑛 𝑥𝑖 = 1

Groetzner, P., Werner, R.: “Multiobjective optimization under uncertainty: A multiobjective robust 
(relative) regret approach”, European Journal of Operational Research, Vol. 296/1, pp. 101-115 (2022).
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▪ Main Limitation for Portfolio Optimization

• regret target m𝑖𝑛
ො𝑥

 𝑓( ො𝑥, 𝜉) independent from other objectives: 

leads to unrealistic minima

• Concept corresponds to Worst-Case-Robustness
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Multi-Objective Robust Optimization with Benchmark Solutions
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Generalization of Min-Max Regret Robustness..

▪ Find a solution where the uncertain objective is closest to a 

benchmark solution for every scenario

m𝑖𝑛
𝑥∈𝑋

  m𝑎𝑥
𝜉∈𝑆

  𝑟(𝑥, 𝜉) with    ri x, 𝜉 = ቊ
( 𝑓𝑖(𝑥, 𝜉) − ℬ(𝜉)  ,  𝑖 = 𝒷

𝑓𝑖 𝑥  , 𝑒𝑙𝑠𝑒 

where

▪ 𝒷 uncertain objective 

▪ ℬ(𝜉) unique benchmark solution for scenario 𝜉 (tbd.)

▪ .  metric (tbd.)

.. in the special case of Partial Uncertainty

1. Find one benchmark solution value for each scenario with 

involvement of all objectives

2. Adapt the original optimization problem and only replace the 

uncertain objective

Practitioners can keep their framework since they just need 

to make a minor change

Simoes, G., et al.: “Relative robust portfolio optimization with 
benchmark regret.” Quantitative Finance, 18(12), (2018).
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Finding Benchmark Solutions
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Reason why

▪ speed-up

▪ practitioners have different further objectives and can easily add them

Practitioners demand efficiency and simplicity

Preliminaries

▪ no involvement of decision maker

▪ consider the bicriteria problem of 𝑓𝜇 and 𝑓𝜎 with uncertain 

covariance Σ𝜉

Extension of Markowitz m𝑖𝑛
𝑥∈𝑋

−𝜇𝑇(𝑥)

m𝑎𝑥
𝜉∈𝑆

𝑥𝑇Σ𝜉𝑥−ℬ(𝜉)

𝑠. 𝑡. 𝑥 ∈ [0,1]𝑛,     σ𝑖=1
𝑛 𝑥𝑖 = 1
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▪ speed-up

▪ practitioners have different further objectives and can easily add them

Practitioners demand efficiency and simplicity

Preliminaries

▪ no involvement of decision maker

▪ consider the bicriteria problem of 𝑓𝜇 and 𝑓𝜎 with uncertain 

covariance Σ𝜉

Extension of Markowitz m𝑖𝑛
𝑥∈𝑋

−𝜇𝑇(𝑥)

m𝑎𝑥
𝜉∈𝑆

𝑥𝑇Σ𝜉𝑥−ℬ(𝜉)

𝑠. 𝑡. 𝑥 ∈ [0,1]𝑛,     σ𝑖=1
𝑛 𝑥𝑖 = 1

 

Possible Strategies motivated by practice

a. Fixed values for each scenario (bounded volatility) (in practice: 0.03)

b. Traditional Markowitz with certain risk aversion (in practice: 3.5)

c. Lower bound of the inner 60% percentile regarding volatility of all 

efficient portfolios
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.

a. .

b. .

c. .

c. Lower bound of the inner 60% percentile regarding volatility of all efficient portfolios

Finding Benchmark Solutions for Each Scenario

Normal = 4.04 %

Crisis = 6.51 %

Growth = 2.73 %
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Robust Optimization Results for the Best-Performing Strategy.

a. .

b. .

c. .

c. Lower bound of the inner 

60% percentile regarding 

volatility of all efficient 

portfolios

Metric: 2-norm

𝑓𝑣𝑜𝑙𝑎(𝑥, 𝜉) − ℬ(𝜉) 2

Markowitz solutions

Robust solutions

Benchmark solution
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Robust Optimization Results for the Best-Performing Strategy.

a. .

b. .

c. .

c. Lower bound of the inner 

60% percentile regarding 

volatility of all efficient 

portfolios

Metric: 2-norm

𝑓𝑣𝑜𝑙𝑎(𝑥, 𝜉) − ℬ(𝜉) 2

Markowitz solutions

Robust solutions

Benchmark solution
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Conclusion
—

▪ Two use cases with practical relevance dealing with uncertain parameters in 

portfolio optimization

▪ Sensitivity of return parameter described by appliying multicriteria 

optimization algorithms

▪ Finding suitable solutions under varying volatility scenarios with multicriteria 
robust optimization

▪ Introduction of a new robustness concept featuring benchmarking 
solutions

▪ Strategy for finding user-independent benchmarking solutions

▪ Evaluation of the best strategy
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