ADI Method 00000000 ADE Method 00000000 Numerical Examples

A Comparison Study of ADI and ADE Methods of the Black-Scholes equation on option pricing models

Neda Bagheri Renani

Doctoral advisor: Daniel Ševčovič.

March 27, 2024

Neda Bagheri Renani

Introduction the Two-Dimensional Black-Scholes equation	ADI Method	ADE Method	Numerical Examples
●○○○	00000000	00000000	

1 Introduction the Two-Dimensional Black-Scholes equation

2 ADI Method

3 ADE Method

4 Numerical Examples

Introduction the Two-Dimensional Black-Scholes equation $0 \bullet 0 0$	ADI Method 00000000	ADE Method 00000000	Numerical Examples		
Interest rate and Statistic Black-Scholes equation					
If we assume that					
$dr = \kappa$	$(\theta - r)dt + \sigma_r dt$	w _r			
and $dS =$	$= \mu S dt + \sigma S dw_s$				
Where					
Cor(c	$dw_s, dw_r) = \rho.dt$	t			
and $rac{\partial V}{\partial t} = rac{\sigma_s^2}{2}$	$S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S}$	-rV			
S is geometric Brownian motio	on				

 $\frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{\sigma_s^2}{2}S^2\frac{\partial^2 V}{\partial S^2} + \frac{1}{2}\sigma_r^2\frac{\partial^2 V}{\partial r^2} + \rho\sigma rS\frac{\partial^2 V}{\partial S\partial r} + (\kappa(\theta - r) - \lambda\sigma_r)\frac{\partial V}{\partial r} - rV = 0$

where λ representing the so-called market price of risk and r>0 the risk-free interest rate.

P Kútik, K Mikula - Discrete and Continuous Dynamical Systems, 2015

Introduction the Two-Dimensional Black-Scholes equation $OO \bullet O$	ADI Method 00000000	ADE Method 00000000	Numerical Examples

Two-dimensional parabolic Black-Scholes equation

$$\frac{\partial V}{\partial \tau} = \frac{1}{2}\sigma_1^2 S_1^2 \frac{\partial^2 V}{\partial S_1^2} + \frac{1}{2}\sigma_2^2 S_2^2 \frac{\partial^2 V}{\partial S_2^2} + \frac{1}{2}\rho\sigma_1\sigma_2 S_1 S_2 \frac{\partial^2 V}{\partial S_1 \partial S_2} + rS_1 \frac{\partial V}{\partial S_1} + rS_2 \frac{\partial V}{\partial S_2} - rV \frac{\partial V}{\partial S_1} + rS_2 \frac{\partial V}{\partial S_2} + rS_1 \frac{\partial V}{\partial S_1} + rS_2 \frac{\partial V}{\partial S_2} + rV \frac{\partial V}{\partial S_1} + rS_2 \frac{\partial V}{\partial S_2} + rV \frac{\partial V}{\partial S_1} + rV \frac{\partial V}{\partial S_2} + rV \frac{\partial V}{\partial S_2} + rV \frac{\partial V}{\partial S_1} + rV \frac{\partial V}{\partial S_2} + rV \frac{\partial V}{\partial S_2} + rV \frac{\partial V}{\partial S_1} + rV \frac{\partial V}{\partial S_2} + rV \frac{\partial V}{\partial$$

Where $\tau = T - t$ and $(s, r, \tau) \in \Omega \times (0, T]$ and $u = u(S_1, S_2, \tau)$ is the three-variate *u* function.

One of the variables is τ and the other two variables are the spatial variables. By the two dimensional Black-Scholes equation we mean that there are two special variables in this equation.

Method for the Two-Dimensional Black-Scholes Equation.

$$\begin{split} Lu_{ij}^{n} = & \frac{\sigma_{1}^{2}}{2} \frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{h_{1}^{2}} + \frac{\sigma_{2}^{2}}{2} \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{h_{2}^{2}}, \\ & + \rho\sigma_{1}\sigma_{2} \frac{u_{i+1,j+1}^{n} - u_{i,j+1}^{n} + u_{i+1,j}^{n} + u_{i,j}^{n}}{h_{1}h_{2}} \\ & + r \frac{u_{i+1,j}^{n} - u_{i-1,j}^{n}}{2h_{1}} + r \frac{u_{i,j+1}^{n} - u_{i,j-1}^{n}}{2h_{2}} - r u_{i,j}^{n}. \end{split}$$

- The two-dimensional Black-Scholes equation can be discretized as the one dimensional.
- Black-Scholes equation. To simplify the computations, the discrete operator *L* is defined.

Introduction the Two-Dimensional Black-Scholes equation	ADI Method ●0000000	ADE Method 00000000	Numerical Examples

Introduction the Two-Dimensional Black-Scholes equation

2 ADI Method

3 ADE Method

4 Numerical Examples

Introduction 0000	he Two-Dimensional Black	-Scholes equation	ADI Method 0000000	ADE Method 00000000	Numerical Examples 0000000

Alternating Direction Implicit Method

To obtain the Alternating Direction Implicit (ADI), the time derivation will be estimated as:

$$\frac{\partial u}{\partial t} \cong \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}} + u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^n}{\Delta t} = \frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t} + \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^n}{\Delta t}.$$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method 0000000	ADE Method 00000000	Numerical Examples

Now , we try to following equation to solve the ADI equation. First, we solve Equation in below :

$$\frac{u_{i,j}^{n+1}-u_{i,j}^{n,\frac{1}{2}}}{\Delta t}+\frac{u_{i,j}^{n,\frac{1}{2}}-u_{i,j}^{n}}{\Delta t}=L_{x}u_{i}^{n,\frac{1}{2}}+L_{y}u_{i}^{n+1}.$$

We will explain the way of obtaining the above mentioned equation in the following. To get from -n to -(n + 1) to in ADI method, we first solve Equation in below:

$$\frac{u_{i,j}^{n,\frac{1}{2}} - u_{i,j}^{n}}{\Delta t} = L_{x} u_{i,j}^{n,\frac{1}{2}}$$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method 0000000	ADE Method 00000000	Numerical Examples

For $j = 1, ..., N_y$ and every one of them is a tridiagonal set from the N_x dimension. By this action, the values of u will be obtained in $n, \frac{1}{2}$ stage. Then, to obtain u in (n + 1) phase, we solve:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n,\frac{1}{2}}}{\Delta t} = L_y u_{i,j}^{n+1}$$

Then, we get to the below equation:

$$\alpha_{i}u_{i-1,j}^{n,\frac{1}{2}} + \beta_{i}u_{i,j}^{n,\frac{1}{2}} + \gamma_{i}u_{i+1,j}^{n,\frac{1}{2}} = f_{i,j}$$

For constant *j* and for $i = 1, 2, ..., N_x$ in the above equation, the equation set is defined which is a traditional set.

Introduction the Two-Dimensional Black-Scholes equation 0000	ADI Method 0000●000	ADE Method 00000000	Numerical Examples 0000000

$$A_{x} = \begin{bmatrix} \beta_{1} & \gamma_{1} & 0 & \dots & 0 & 0 \\ \alpha_{2} & \beta_{2} & \gamma_{2} & \dots & 0 & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \alpha_{N_{x}=1} & \beta_{N_{x}=1} & \gamma_{N_{x}=1} \\ 0 & 0 & 0 & \dots & \alpha_{N} & \beta_{N} \end{bmatrix}$$

The sentence $\alpha_1 u_{0,j}^{n+\frac{1}{2}}$ In the first line and the sentence $\gamma_{N_x} u_{N_{x+1}}^{n,\frac{1}{2}}$. In the last line will be transferred to right and will be subtracted from $f_{N_{x,j}}, f_{1,j}$ respectively. These sentences will be substituted from the boundary condition and the left side of the rectangular area of $\Omega = [0, L] \times [0, M]$.

Introduction the Two-Dimensional Black-Scholes equation	ADI Method	ADE Method	Numerical Examples
	00000●00	00000000	0000000

$$u_{i,j}^{n,\frac{1}{2}}, u_{i-1,j}^{n,\frac{1}{2}}, u_{i+1,j}^{n,\frac{1}{2}}$$

In The present equations, the coefficient $u_{i-1,j}^{n,\frac{1}{2}}$ is :

$$\alpha_i = -\left(\frac{\sigma_1^2}{4}\frac{\Delta t}{h^2}\right)$$

And coefficient $u_{i,j}^{n,\frac{1}{2}}$ is :

$$\beta_i = \left(1 + \frac{\sigma_1^2}{2}\frac{\Delta t}{h^2} - \frac{1}{2}\frac{\Delta t}{h}r + \frac{1}{2}r\right)$$

And coefficient $u_{i+1,j}^{n,\frac{1}{2}}$ is :

$$\gamma_i = -\left(\frac{\sigma_1^2}{4}\frac{\Delta t}{h^2} + \frac{r}{2}\frac{\Delta t}{h}\right)$$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method 00000000	ADE Method 00000000	Numerical Examples

If we transfer the values in the -n step to the right side and define:

$$\begin{split} f_{ij} := & u_{i,j}^n + \frac{\Delta t}{4} \ \sigma_2^2 \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{h^2} + \frac{\Delta t}{2} r \frac{u_{i,j+1}^n - u_{i,j}^n}{h} \\ & + \frac{\Delta t}{2} \rho \sigma_1 \sigma_2 \frac{u_{i+1,j+1}^n + u_{i-1,j-1}^n - u_{i-1,j+1}^n - u_{i+1,j-1}^n}{4h^2} \end{split}$$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method	ADE Method	Numerical Examples
	0000000●	00000000	0000000

The algorithm of this half-step is

for $j = 1 : N_y$, for $i = 1 : N_x$, Set $\alpha_i, \beta_i, \gamma_i$ and $f_{i,j}$ end

solve
$$A_x u_{L:N_{i,j}^2}^{n,\frac{1}{2}}$$
 by using Thomas algorithm.

end

which is a traditional set. The sentence $\alpha_1 u_{i,0}^{n+1}$ is first line and the sentence $\gamma_{N_y} u_{i,N_y+1}^{n+1}$, in the last line will be transferred to the right of the set and their values will be substituted considering the border condition of the sides in top and bottom of $[0, L] \times [0, M]$ of the rectangle area.

Introduction the Two-Dimensional Black-Scholes equation	ADI Method 00000000	ADE Method ●0000000	Numerical Examples

1 Introduction the Two-Dimensional Black-Scholes equation

2 ADI Method

3 ADE Method

4 Numerical Examples

ADE method for 1D Black-scholes equation

We denote by h and k the constant step sizes in the x and t directions, respectively. Let us first consider the explicit Euler method to approximate the solution of :

(a)
$$\frac{u_j^{n+1}-u_j^n}{k} = a^2 \frac{\partial^2 x}{\partial y^2} \left(u_{j+1}^n - 2u_j^n + u_{j-1}^n \right), 1 \le j \le J - 1, \quad n \ge 0$$

(b) $u_j^0 = f(jh), \quad 0 \le j \le J$
(c) $u_0^{n+1} = A, \quad u_J^{n+1} = B, \quad n \ge 0.$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method	ADE Method	Numerical Examples
	0000000	0000000	0000000

The truncation error for each sweep is O(k/h), but when we take the average of the two sweep solutions this error becomes $O(k^2/h)$.

In order to obtain an efficient scheme while keeping the other desirable properties, this operator is split additive by the matrix decomposition A = L + D + U, where *L* is lower diagonal, *D* is diagonal and *U* denotes an upper-diagonal matrix. We further define the symmetric splitting

$$B = L + \frac{1}{2}D \qquad \qquad C = U + \frac{1}{2}D.$$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method 00000000	ADE Method 000●0000	Numerical Examples

Then we can formulate the three steps of the ADE scheme with its upward/downward sweeps and the combination (also for higher dimensions) as:

UP
$$u^{n+1} = [I - kB(v^n)]^{-1} [I + kC(v^n)] v^n$$
,
DOWN $d^{n+1} = [I - kC(v^n)]^{-1} [I + kB(v^n)] v^n$,
COMB $v^{n+1} = \frac{1}{2} [u^{n+1} + d^{n+1}]$.

ADE method for Two Dimensional Black-Sholes equation

Fichera Conditions For solving 2D Black-Scholes equation, we considering that $\tau = T - t$, and $V = V(S, r, \tau)$ (r is VaŠiček interest rate). We will have the following equations

$$\frac{\partial V}{\partial \tau} + \vec{\alpha} \cdot \nabla V - \nabla \cdot \vec{B} \nabla V + rV = 0$$

Where

$$\vec{\alpha} = - \left(\begin{array}{c} rS - \nu S - \frac{1}{2}\rho\sigma S \\ \kappa(\theta - \nu) - \lambda\nu - \frac{1}{2}\sigma^2 - \frac{1}{2}\rho\sigma\nu \end{array} \right).$$

and

$$\widetilde{B} = \left(\begin{array}{cc} \frac{1}{2}\sigma S^2 & \quad \frac{1}{2}\rho\sigma S \\ \frac{1}{2}\rho\sigma S & \quad \frac{1}{2}\sigma^2 \end{array} \right)$$

We represent the solution that is an estimation,

$$u_{r,s}^n \approx u(x_r, y_s, t_n), \quad 0 \leq r \leq J_x, \quad 0 \leq S \leq J_x, \quad 0 \leq n \leq N.$$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method	ADE Method	Numerical Examples
	00000000	00000000	0000000

We will frequently utilize the second-order difference operator σ_x^2 in the following discussion. This operator is defined as

$$\sigma_x^2 u_{r,s}^n = \frac{u_{r+1,s}^n - 2u_{r,s}^n + u_{r-1,s}^n}{(\Delta x)^2}.$$

By using the σ_x^2 , we can obtain an explicit scheme for Black-Sholes equation.

$$\frac{u_{r,s}^{n+1} - u_{r,s}^{n}}{\Delta h} = \frac{\sigma_x^2 u_{r,s}^{n+1}}{\left(\Delta x\right)^2} - \frac{\sigma_y^2 u_{r,s}^{n+\frac{1}{2}}}{\left(\Delta y\right)^2}.$$
 (2)

Introduction the Two-Dimensional Black-Scholes equation	ADI Method 0000000	ADE Method 000000●0	Numerical Examples

Then, we have:

$$\frac{u_{r,s}^{n+1} - u_{r,s}^{n}}{\Delta t} = \frac{1}{2} \left[\frac{\sigma_x^2 \left(u_{r,s}^{n+1} - u_{r,s}^{n+\frac{1}{2}} \right)}{\left(\Delta x \right)^2} + \frac{\sigma_y^2 \left(u_{r,s}^{n+\frac{1}{2}} - u_{r,s}^{n} \right)}{\left(\Delta y \right)^2} \right]$$

.

Denote
$$\mu_x = \frac{\Delta t}{(\Delta x)^2}, \ \mu_y = \frac{\Delta t}{(\Delta y)^2}.$$

This equation has the potential to be expressed in a different manner

$$\left(1-rac{1}{2}\mu_x\sigma_x^2-rac{1}{2}\mu_y\sigma_y^2
ight)u_{r,s}^{n+1}=\left(1+rac{1}{2}\mu_x\sigma_x^2+rac{1}{2}\mu_y\sigma_y^2
ight)u_{r,s}^n.$$

Introduction the Two-Dimensional Black-Scholes equation	ADI Method 00000000	ADE Method 0000000	Numerical Examples

In terms of stability, it is readily achievable to determine the amplification factor

$$\lambda(k) = \frac{1 - 2\mu_x \sin^2(\frac{1}{2}k_x)\Delta x - 2\mu_y \sin^2(\frac{1}{2}k_y)\Delta y}{1 + 2\mu_x \sin^2(\frac{1}{2}k_x)\Delta x + 2\mu_y \sin^2(\frac{1}{2}k_y)\Delta y},$$

whose amplitude is always less than or equal to one for any mesh sizes Δx and Δy . Hence, the ADE method is unconditionally stable.

Introduction the Two-Dimensional Black-Scholes equation	ADI Method	ADE Method	Numerical Examples
	00000000	00000000	●000000

1 Introduction the Two-Dimensional Black-Scholes equation

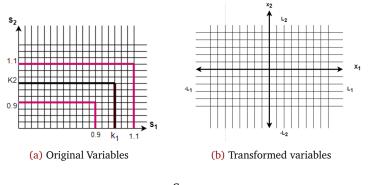
2 ADI Method

3 ADE Method

4 Numerical Examples

All cash or none

First, the option of two cash assets or none will be considered. We assume that by having two assets x, y the income of option is as follows:



$$X_i = \log \frac{S_i}{K_i} \quad i = 1, 2$$

Figure 1: $G = \{(S_1, S_2) \mid 0.9K_1 \le S_1 \le 1.1K_1, 0.9K_2 \le S_2 \le 1.1K_2\}$

Introduction the Two-Dimensional Black-Scholes equation 0000	ADI Method 00000000	ADE Method 00000000	Numerical Examples

$$\Lambda(x,y) = \begin{cases} \text{cash} & S_1 \ge K_1, \ S_2 \ge K_2\\ 0 & \text{unless} \end{cases}$$

where K_1 and K_2 are the prices of S_1 , S_2 . The function figure is as follows.

The following values will be used for the numerical simulation of the parameters.

 $\sigma_1 = \sigma_2 = 0.3, \ r = 0.03, \ \rho = 0.5, \ cash = 1, \ K_1 = K_2 = 100,$

We consider the calculation domain as $\Omega = [0, 300] \times [0, 300]$.

Option to buy on a maximum of Two assets

In this example, the option to purchase a maximum of two cash assets is considered. Income of purchase option are considered as:

$$(x,y) = max(S_1 - K_1, S_2 - K_2, 0)$$

Which are X_1 and X_2 futures prices and x and y current asset prices are the first and second, respectively.

M = [0, 300], L = [0, 300].In this case the Dirichlet condition in y = M, x = L but in y = 0, x = 0 the boundary linear condition is used.

Introduction the Two-Dimensional Black-Scholes equation	ADI Method	ADE Method	Numerical Examples
	00000000	0000000	0000000

Conclusion and outlook

- We presented the idea of ADI and ADE methods.
- Our aim is to compare the two numerical methods for solving 2D Black-Scholes equations.
- We evaluate the performance of the two approaches based on some assumptions.

References

[1]Daniel Ševčovič. Magdaléna Žitnanská 'Analysis of the Nonlinear Option Pricing Model Under Variable Transaction Costs'. Asia-Pacific Finan Markets (2016) 23:153–174

[2]T. Haentjens K. J. in 't Hout, ADI finite difference discretization of the Heston–Hull–White PDE, In: Numerical Analysis and Applied Mathematics, eds. T. E. Simos et al, AIP Conf. Proc. 1281 (2010) 1995–1999.

[3]Buckova, Z., Ehrhardt, M., Günther, M. (2015). Alternating direction explicit methods for convection diffusion equations. Acta Mathematica Universitatis Comenianae, 84(2), 309-325.

[4] Bagheri renani, N., Karnameh haghighi, H, ' A Comparison Study of ADI and LOD Methods on Option Pricing Models', Mathematical Finance, (2017), 7, 275-290.

[5] Peter A Forsyth, Kenneth R Vetzal, Numerical methods for nonlinear PDEs in finance. Handbook of computational finance, 2011, 503-528.

Thanks for your attention!