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1 Itroduction
We are concerned with a simple model of the

insurance coverage due to the loss of COVID-19.

Since the emergence of a new kind of

pneumonia at the end of 2019, the worldwide

confusion was followed and our way of life has

been forced to change.

In the academia, intensive and enormous studies

have been performed from various viewpoints,

which we cannot recall all of outstanding results.



On the other hand, it is also important to

provide suitable insurances in order to mitigate

the disaster in some extent for the loss of

epidemic outbreaks. In this respect, one of the

authors considers certain insurance model for

the epidemic bursts in 2016 (see Ishimura,

Komadel, and Yoshizawa [4]), three years before

COVID-19, where the modelling is based on (i)

the onset of epidemic outbreaks, (ii) the

estimate of ultimate number of removals with

the use of SIR model, (iii) the market risk.



Here, taking account of the fact that such an

epidemic outbreak has really occurred, we take a

different approach to design better and much

practical insurances for the loss of desease.

Our main idea is the use of the

Cramér-Lundberg model in our principal risk

process, which is known to provide a

fundamental modelling tools in the risk theory.

The application to the model of epidemic

outbreaks, however, seems to be new.



2 Preliminary

2.1 Risk process

We begin with considering the well known

Cramér-Lundberg type model in discrete setting:

U(n) = u+ cn− C(n), n = 0, 1, 2, · · · (1)

where

C(n) =

N(n)∑
k=1

Xk. (2)



Here u = U(0) is the initial surplus at time 0,

and c is the insurer’s rate of premium income

per unit time, which is assumed to be

continuously received.

{N(n)} denotes the number of claim process,

which is originally assumed to be a Poisson

process with parameter λ.



The sequence of insurer’s aggregate claim

amount {Xk}k=1,2,··· takes nonnegative values

and assumed to be independent and identically

distributed random variables with common

distribution function FX(x).

Moreover, we assume that the process {N(n)}
and the sequence {Xk}k=1,2,··· are independent.



Later, we will fix the insurance covering period

[0, T ] with the expiration date T (> 0,∈ N) and
assume that.

N(n) : the cumulative number of infectives at

date n.

{Xk} : the random variables which are modelled

by the infectious distribution of real data.



Since the premium is usually stochasitc, we put

U(n) = u+ P (n)− C(n), n = 0, 1, 2, · · ·
(3)

where P (n) denotes the insurer’s premium

income process.

For example, if the premium is paid at the

beginning and the middle of the covering period,

P (n) = c1{n≥0} + c1{n≥T/2},

where 1A is the indicator function of the set A.



2.2 SIR model

It is common to appeal to the famous

Kermack-McKendrick theory, which is also

known as SIR model, for the situation of

epidemic outbreaks.

The original SIR model is the system of ordinary

differential equations for three sub-populations:

S(t) is the number of susceptibles to the

disease, I(t) is the number of infectives, and



R(t) is the number of removals.

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t),

where the constants β is the infection parameter

and γ is the removal parameter representing the

rate at which infectives become immune.



The important parameter is

ϱ =
γ

β
, (4)

which is related to the reproduction number. In

this model the total population

N = S(t) + I(t) +R(t)

is preserved.



Following Singh, Lal and Kotti [7], which is

based on the idea of Wacker and Schlüter [10],

we employ the implicit discrete system as

follows.

Sk+1 − Sk

tk+1 − tk
= −βk+1

N
Sk+1Ik+1

Ik+1 − Ik
tk+1 − tk

=
βk+1

N
Sk+1Ik+1 − γk+1Ik+1(5)

Rk+1 −Rk

tk+1 − tk
= γk+1Ik+1



where {tk}Mk=1 denotes the considered time

sequence. In our empirical study, we take {tk}
as the successive date of observations.

We note that N is preserved also in this

discretization: namely,

N = Sk + Ik +Rk = Sk+1 + Ik+1 +Rk+1.



3 Insurance design

As is well known, insurance has been employed

to manage insurable risks, which include, for

example, liability, property, fire, automobile, life,

health, pension, and so on.

Here we intend to design suitable insurance for

the loss of epidemic outbreaks, such as

COVID-19.

Our strategy is to use the risk model (3) for the

insurance coverage.



Let [0, T ] be the insurance coverage period

where T (> 0,∈ N) means the expiration date.

Empirically it seems natural to proclaim that

N(n) : the cumulative number of infectives at

date n.

{Xk} : the random variables which are modelled

by the infectious distribution of real data.



We note that the interpretation of Xk will be

much more flexible.

We understand that it is possible to assume that

Xk are deterministic variables.

We also remark that, in our setting, N(n) may

no longer be a stochastic process but a

deterministic process governed by the SIR

model.



Now, the insurance should be designed so that

insurers are also able to cover the risk’s loss,

which is represented by the total claim process

C(n) over the insurance period. Usually,

calculations are based on the so-called premium

principle. Here, the premium refers to the

payment that a policyholder makes for insurance

cover against a risk. Following Dickson[2], let us

denote by ΠZ the premium that an insurer

charges to cover a risk Z.



Our proposed insurance for the loss of epidemic

outbreaks can be formulated as follows.

Proposition 1.

Insurances against epidemic outbreaks will be

designed if the next condition is satisfied.

c+ E[P (T )]−ΠC(T ) > 0.



We recall that there are known several types of

premium principles. Here are the list of

examples which we will treat later.

(i) The expected value principle:

ΠZ = (1 + θ)E[Z],

where θ > 0 is the premium loading factor.

(ii) The variance principle:

ΠZ = E[Z] + aV [Z],

where a > 0 is the loading factor.



(iii) The standard deviation principle:

ΠZ = E[Z] + a
√

V [Z],

where a > 0 is the loading factor.

In any case, within our model, it is important to

effectively estimate N(n) and Xk from the real

data, which is the subject of the next section.



4 Empirical study

4.1 Selection of COVID-19 data

Now, we have obtained data for COVID-19 from

the website of the Minister of Health, Labour

and Welfare of Japan

(https://covid19.mhlw.go.jp).

The data for Tokyo from January 5th 2022 to

July 3rd 2022 for a total of 180 observations,



which includes:

Î : the cumulative number of infected;

R̂ : the number of cases that are discharged

from hospital/released from treatment;

D̂ : the cumulative deaths.



For the recovered cases we define

Rk = R̂k + D̂k

and for new infected cases

Ik = Î −Rk.



For estimating the parameters of the SIR model,

we divide the total data into successive two

parts:

1 : 120 data from January 5th to May 4th, 2022;

2 : 60 data from May 5th to July 3rd, 2022.

The initial window of {tk}120k=1 is employed for

estimating the parameters, and the rest of the

data of {tk}180k=121 is used for the validation of

the model and forecasting.



To eliminate noises from the data, we have

applied a 7MA (moving average) filter as

smoothing filter.

Figure 1 shows the cumulative cases of reported

infected people and the cumulative cases of

reported recovered people in Tokyo.

The upper graph shows the cumulative

infectives and recovered cases.

The lower graph shows the daily new cases and

the cumulative recovered cases.
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図1 COVID-19 data for Tokyo from t = 1 to t = 120.



4.2 Calculation of time-varying β and γ

from observed data

We follow the methodology used in Singh, Lal

and Kotti[7] for estimating the time-varying

parameters for the SIR model.

Assuming that the discrete values of I and R for

k = 1, . . . ,M − 1 where M = 120, the

time-varying parameter are computed as follows:



βk+1 =
N (Sk − Sk+1)

Ik+1 · Sk+1 ·∆k+1

and

γk+1 =
Rk+1 −Rk

Ik+1 ·∆k+1
,

where ∆k = tk+1 − tk = 1 for k = 1, . . . ,M − 1.

With these parameters, we can calculate the

time-discrete solution of the SIR model.



4.3 Model validation and short term

forecast

We can assume that the time-varying

transmission and recovery rate for t ≥ 1 take the

following form

β(t) := β1 · exp(−β2t)

and
γ(t) := γ.



The constants β1, β2 and γ are real which can

be determined by the sequences βM
i and γM

i .
It follows from a Maximum Likelihood
estimation that the local minimum are given by

γ̂ =
1

M − 1

M∑
k=2

γk,

δ̂2 =

∑M
k=2 tk · ln (βk)− 1

M−1

[∑M
k=2 ln (βk)

]
·
∑M

k=2 tk∑M
k=2 t

2
k − 1

M−1
·
(∑M

k=2 tk

)2



and

δ̂1 =
1

M − 1

M∑
k=2

(
ln (βk)− tk · δ̂2

)
,

where δ1 := ln(β1) and δ2 := β2.

Using these solutions with the estimated model

we can make short time forecast for the infected

cases and recovered number for the COVID-19

infections in Tokyo.
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図2 Time-varying transmission and recovery rates from processed data for
Tokyo and estimator functions.



In Figure 2 it is shown the transmission rate β

for the model and the estimator as well values

for the recovery rate γ. The estimated

reproduction number ϱ is seen in Figure 3. The

solution for the SIR model for {tk}120k=1 is shown

in Figure 4.

Finally, with the estimation of β and γ we can

make a forecast for values of Ik and Rk where

{tk}180k=121 with the solution of (5) and MLE of

transmission and recovery rates. In Figure 5 we

can observe these solutions.
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図4 Implicit time-discrete SIR model solution. In the left are shown data
for (Ik) and to the right for (Rk).
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図5 SIR model solution forecast and real data. In the left are shown data
for (Ii) and to the right for (Ri).



4.4 Examples of insurance products

We provide examples of insurance products.

The period we treat is 60 days (T = 60) from

May 5th to July 3rd, 2022.

We here regard {Xk} as i.i.d. random variables

which represent the loss due to COVID-19; the

realization is assumed to result in {Ik} with the

abuse of notation, since Ik is used in the above

for the computed deterministic value, but this

time Ik is also regarded as a random variable.



We may thus infer that

C(T ) =

N(T )∑
k=1

Xk =

T∑
k=1

Ik.

The right hand side can be interpreted and

computed in two ways; one is the observed value

from real data and the other is the calculated

value as in §4.3.



The expectation and the variance are described

as follows:

E[C(T )] =
1

T

T∑
k=1

Ik,

V [C(T )] :=
1

T

T∑
k=1

(Ik − E[C(T )])2.



For our window of period, we learn that the

estimated values given by the SIR model to be:

E[C(T )] = 31337.19,

V [C(T )] = 374988335.05.

The values with real data, for comparison, are

computed as

E[C(T )] = 35045.41,

V [C(T )] = 261796199.52.



The difference in variance is rather prominent

for this period.

In both cases, we have estimated the risk ΠC(T )

with the principles of Proposition 1.

In this way, once the omen of epidemic

outbreaks is observed, the insurers may be able

to design suitable insurances for the coverage

against diseases under appropriate premium

principles.



4.5 Case study

We consider an insurance product of fixed

payment. The period we treat is 59 days from

February 1st 2022 to March 31th 2022. The

insurance product against COVID-19 provided

Sompo-Japan is three months, which includes

the above period; however, we neglect the

difference of the period in our analysis. The

premium and the payment of this insurance

product is 500 JPY and 50000 JPY, respectively.



Here we investigate the reason by our model

why this insurance product has resulted in the

suspension of insurance solicitation.

The model is just a simple version of (1)(2):

U(n) = u+ cn−
N(n)∑
k=1

Xk.



We proclaim here that the surplus is for the

individuals, which is different from above, and

Xk is now interpreted as a deterministic fixed

payment 50000 JPY.

As a result, we see that

c =
500

59
, E[Xk] = Xk = 50000,

since the current model is deterministic.



In the above period of 59 days, the number of

infectives grows significantly everyday and we

conclude that the maximum of C(n) is attained

at the last day of n = 59.

We estimate as in the previous subsections that

β̂ = 0.1175 and γ̂ = 0.09161.

Moreover we assume that the population of

Tokyo is N = 14011487 and we have

N(59) = 994028.



The surplus for individuals then becomes

U(59) = u+ 59 · 500
59

− 50000 · 994028

14011487
≈ u− 3450.

Therefore the initial surplus for the individuals

should be over about 3500JPY.



5 Discussions
We have developed an insurance design for the

loss of epidemic outbreaks.

The model is based on the well-known

Cramér-Lundberg risk process, and with suitable

premium principles, it is possible to introduce

insurances against the risk of epidemic bursts.

Empirical studies are shown to support our

model.

Further investigation is now in progress. .
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