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Basic vocabulary

 Additive process

 characteristic function 

 characteristic function for increments

 bounds of analyticity strip for 

𝑝𝑝𝑡𝑡+

𝑝𝑝𝑡𝑡−

ℜ(𝜉𝜉)

ℑ(𝜉𝜉)

Time-inhomogeneous Lèvy processes

𝜙𝜙𝑡𝑡 𝜉𝜉 ≔ 𝐸𝐸 𝑒𝑒𝑖𝑖 𝑋𝑋𝑡𝑡 𝜉𝜉

𝜙𝜙𝑡𝑡 𝜉𝜉

Lukacs (1972)

𝜙𝜙𝑠𝑠,𝑡𝑡(𝑢𝑢) =
𝜙𝜙𝑡𝑡 𝑢𝑢
𝜙𝜙𝑠𝑠 𝑢𝑢

+1
We simulate increments for path-dependent products
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Additive processes in finance

Applications in quantitative finance are relatively few:

 Carr-Geman-Madan-Yor (2007) introduce self-similar (or Sato) processes in derivative pricing;

 Li-Li-MendozaArriaga (2016) build a quite large class of Additive proc. via Levy subordination;

 … but are the new frontier:

 Madan-Wang (2020, 2023) Additive bilateral VG and time embedding.

 Carr-Torricelli (2021), European options (Black & Bachelier like)
  with a simple closed formula; 

 A.-Baviera (2021, 2022) Excellent calibration properties and power law scaling.
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Numerical techniques for jump processes

Jump based approaches:

 Cont, R. & Tankov, P. (2003). And references therein (e.g. for Gaussian-Aproximation)

 Eberlein, E. & Madan, D. B. (2009). Pricing of structured products.

CDF-FFT based approaches for Lèvy:

 Glasserman-Liu (2010). Error bounds estimation due to linear CDF interpolation. 

 Chen-Feng-Lin (2012). Simulation via Sinc method;

 Ballotta-Kyriakou (2014) An FFT simulation technique with error bounds estimation.
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The idea: Simulation Lewis-FFT-S method

  CDF   via

Spline interpolation

FFT

Lewis 𝑃𝑃 𝑥𝑥 = 𝑅𝑅𝑎𝑎 −
𝑒𝑒−𝑎𝑎 𝑥𝑥

2 𝜋𝜋
�
−∞

∞

𝑑𝑑𝑢𝑢
𝑒𝑒−𝑖𝑖 𝑢𝑢 𝑥𝑥 𝜙𝜙𝑠𝑠,𝑡𝑡 𝑢𝑢 − 𝑖𝑖𝑖𝑖

𝑖𝑖 𝑢𝑢 + 𝑖𝑖

with 𝑅𝑅𝑎𝑎 a constant

Lee (2004)

   r.v.   drawn via

Our contributions: 

 Estending to additive processes
 Selecting optimal 𝑖𝑖
 Spline interpolation

The method: 

Chen-Feng-Lin (2012): a=0 
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Theoretical results

Theorem 2.1

pt+ & pt− (bounds analyticity strip) non increasing in t for all additive 
processes.

𝑝𝑝𝑡𝑡+

𝑝𝑝𝑡𝑡−

ℜ(𝜉𝜉)

ℑ(𝜉𝜉)

𝜙𝜙𝑠𝑠,𝑡𝑡 =
𝜙𝜙𝑡𝑡 𝑢𝑢
𝜙𝜙𝑠𝑠 𝑢𝑢

Consequence: to simulate the 
increment we always consider pt+ & pt−

+1
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Assumption: Exponential Decay: 

 Proposition 2.2. 

    If the Assumption hold
1. CDF error bound (𝑁𝑁 number of grid points)

2. optimal bound for a = (pt+ + 1)/2

It is possible to have an error bound also 
for power decay.

Theoretical results

𝜔𝜔 > 0
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Comparison with Hilbert Transform

Chen-Feng-Lin (2012): ∼ max 𝑒𝑒
𝜋𝜋𝑝𝑝𝑡𝑡

−

ℎ , 𝑒𝑒−
𝜋𝜋(𝑝𝑝𝑡𝑡

++1)
ℎ

Lewis with optimal a: ∼ min 𝑒𝑒
𝜋𝜋𝑝𝑝𝑡𝑡

−

ℎ , 𝑒𝑒−
𝜋𝜋(𝑝𝑝𝑡𝑡

++1)
ℎ

Error bounds: 

CDF inversion error with and without a symmetric grid

= log2 𝑁𝑁 = log2 𝑁𝑁

Unstable for 
numerical
routines
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Sampling from approximated CDF 
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Sampling from approximated CDF 
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Sampling from approximated CDF 
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Sampling from approximated CDF (linear interpolations)

Approximated CDF �𝑃𝑃 on a grid 𝑥𝑥1, … 𝑥𝑥𝑗𝑗 , … 𝑥𝑥𝐾𝐾 
Generate 𝑁𝑁𝑆𝑆𝑖𝑖𝑆𝑆 uniform random variables U

Steps

1. Select j s.t. �𝑃𝑃 𝑥𝑥𝑗𝑗−1 ≤ 𝑈𝑈 ≤ �𝑃𝑃 𝑥𝑥𝑗𝑗   (N-N alg.)

2. Determine the linear interpolation coefficients 𝑐𝑐0
𝑗𝑗 and 𝑐𝑐1

𝑗𝑗

3. Compute 𝑋𝑋 = 𝑐𝑐0
𝑗𝑗 + 𝑐𝑐1

𝑗𝑗𝑈𝑈

Comp. Costs

1. 𝑁𝑁𝑠𝑠𝑖𝑖𝑆𝑆 log2 𝑁𝑁𝑆𝑆𝑖𝑖𝑆𝑆

2. 6 𝐾𝐾

3. 𝑁𝑁𝑠𝑠𝑖𝑖𝑆𝑆
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Comp. Costs

Sampling from approximated CDF (Spline interpolation)

In practice K (grid size) << 𝑁𝑁𝑠𝑠𝑖𝑖𝑆𝑆

1. 𝑁𝑁𝑠𝑠𝑖𝑖𝑆𝑆 log2 𝑁𝑁𝑆𝑆𝑖𝑖𝑆𝑆

2. 8𝐾𝐾 − 7

3. ≈ 𝑁𝑁𝑠𝑠𝑖𝑖𝑆𝑆

Steps

1. Select j s.t. �𝑃𝑃 𝑥𝑥𝑗𝑗−1 ≤ 𝑈𝑈 ≤ �𝑃𝑃 𝑥𝑥𝑗𝑗

2. Determine the spline interpolation coefficients

3. Compute 𝑋𝑋 = 𝑠𝑠𝑝𝑝𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒(𝑈𝑈)

Similar computational times for 
spline and linear interpolation
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Error contributions

When pricing a generic derivative with an approximated CDF

Error < CDF related Error +

 Interpolation Error +
 
 Truncation Error 

Upper bounds are analytical
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Error contributions

= log2 𝑁𝑁

One-month European call case with linear interpolation

Linear interpolation: O 1
𝐾𝐾2

Spline interpolation: O 1
𝐾𝐾6

Upper bounds:
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The model: Additive Tempered Stable (ATS)

Forward with expiry T is modeled as an exponential Additive

with 𝑓𝑓𝑡𝑡 an ATS, whose characteristic function is    

with

Excellent
calibration 

Match IV 
skew

𝛼𝛼 ∈ (0,1)𝑘𝑘𝑡𝑡 = �𝑘𝑘𝑡𝑡𝛽𝛽 𝜂𝜂𝑡𝑡 = �̅�𝜂𝑡𝑡𝛿𝛿 𝜎𝜎𝑡𝑡 = 𝜎𝜎

𝐹𝐹𝑡𝑡 𝑇𝑇 ≔ 𝐹𝐹0 𝑇𝑇 exp(𝑓𝑓𝑡𝑡)

Skew: slope of the IV ATM. Risk 
management of derivatives
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Interpolation error: linear vs spline

= log2 𝑁𝑁

Bias estimation: MAX error on 30 calls with moneyness degree in the range (−0.2, 0.2)
‘Variance’ estimation: SD error with 107 simulations 



18

Accuracy

 Plain Vanilla calls (30 calls, 𝑡𝑡𝑡𝑡𝑡𝑡 = 1𝑡𝑡, moneyness degree in the range (−0.2, 0.2), 𝑁𝑁𝑠𝑠𝑖𝑖𝑆𝑆 = 107) 

 Discretely monitored options (5y, Q/Q)
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Computational time: Lewis-FFT-S vs GA (with Ziggurat)

Lewis-FFT-S error  ≤  GA error  
always  

with
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Computational time: Lewis-FFT-S vs GBM

Simulation  107  trials  

≃ 3 times GBM
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Conclusions on Lewis-FFT-S

A new MC technique for Additive processes 
based on FFT

We improve the two main sources of numerical 
errors (CDF inversion and linear interpolation)

Very fast: same order of magnitudes as GBM.



22

Conclusions: additive vs other model classes. Not only fast-simulation! 

Additive processes Stochastic volatility Rough volatility

si
m

pl
e 

de
ri

va
ti

ve
s

closed formula closed formula NO closed formula 

sh
or

t 
ti

m
e

𝑠𝑠𝑘𝑘𝑒𝑒𝑠𝑠 ∼ 𝑡𝑡−
1
2 𝑠𝑠𝑘𝑘𝑒𝑒𝑠𝑠 ∼ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 𝑡𝑡 𝑠𝑠𝑘𝑘𝑒𝑒𝑠𝑠 ∼ 𝑡𝑡−

1
2

si
m

ul
at

io
n

fast ∼ 𝑂𝑂(1) 𝐺𝐺𝐺𝐺𝐺𝐺 slow ∼ 102 − 103 𝐺𝐺𝐺𝐺𝐺𝐺 very slow ∼ ? 𝐺𝐺𝐺𝐺𝐺𝐺 

ca
lib

ra
ti

on • skew

• very low MSE/MAPE

• wrong skew

• high MSE/MAPE

• skew

• (?) MSE/MAPE
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