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Introduction



Motivation

I Standard calibration of option pricing models to the implied
volatility (IV) surface is based on the following optimization:

Θ̂ = argmin
Θ

1
n

nT∑
t=1

nK∑
j=1

(
IVmktt,j − IVΘ

t,j

)2
(1)

where n = nT × nK , nT is the number of maturities, nK is the
number of strikes. The calibration must be solved numerically

I Accurate model calibration is important for derivatives pricing,
risk-management, portfolio selection and volatility forecasting

I Pitfalls of the standard calibration approach in (1):
1. there is no established way of choosing the starting point
2. multiple local minima
3. measuring uncertainty is usually not possible

2/19



Contributions

I We turn the calibration problem into a Bayesian estimation task
based on Sequential Monte Carlo (SMC) methods, avoiding the
traditional issues of (1) thanks to density tempering

I We provide extensive results for the Stochastic Volatility
Correlated Jumps (SVCJ) model of Duffie et al. (2000) both on
simulated and real data

I Our approach largely outperforms the benchmark in terms of
run-time accuracy and stability of estimated parameters

I We show how to speed up computations by leveraging
delayed-acceptance MCMC methods and Deep Learning (DL)
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Sequential Monte Carlo
Optimization



SMC Beyond State-Space Models

I SMC can be used to sample from the posterior distribution of
static parameters, π(Θ | D) ∝ L(Θ;D)p(Θ), where L(Θ;D) is the
likelihood function of data D and p(Θ) is a prior distribution

I The algorithm represents π(Θ | D) by simulating N weighted
particles {w(i),Θi}Ni=1 using importance sampling and resampling

I Main consequence:
SMC also works with a generic objective function h(Θ;D). Let
ψ(Θ;D) ∝ exp[h(Θ;D)], then ψ(Θ;D) can be seen as a density
up to a normalizing constant such that π(Θ | D) ∝ ψ(Θ;D)p(Θ)

I The standard calibration can be easily cast into this framework!
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Likelihood Tempering

I Moving from p(Θ) to π(Θ | D) in one step can be very difficult.
As in Del Moral et al. (2006), we can construct a sequence of
intermediate target distributions πγp(Θ | D), p = 1, . . . ,P

πγp(Θ | D) ∝ L(Θ;D)γpp(Θ) (2)

where 0 = γ1 < . . . < γP = 1 is called tempering schedule

I The sequence γ1:P can be chosen adaptively to maintain a certain
effective sample size, ESSp = (

∑N
i=1 w

(i)
p )2/

∑N
i=1(w

(i)
p )2, where

w(i)
p+1 = w(i)

p
L(Θi;D)γp+1p(Θ)

L(Θi;D)γpp(Θ)
= w(i)

p L(Θi;D)γp+1−γp (3)

are the importance weights. We choose the next γp+1 to ensure
NESS = η · N, where η ∈ (0, 1) and N is the number of particles

I Finally, we resample the particles using w(i)
p and then we move

them by running NMH iterations of a Metropolis-Hastings (MH)
algorithm
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Application to Option Pricing



SVCJ Model Specification

I Given (Ω,F , (Ft)t∈[0,T],Q), the risk-neutral dynamics of the
log-returns Xt = ln(St/S0) is defined as follows:

dXt = (r − 0.5Vt − λµ?)dt +
√
VtdWx

t + JxdNt (4)

dVt = k(θ − Vt)dt + σ
√
VtdWv

t + JvdNt (5)

where E[dWx
t dWv

t ] = ρdt, dNt ∼ Poi(λdt), Jv ∼ Exp(µv) and
(Jx | Jv) ∼ N (µJ + ρJJv, σ2J )

I This model has been estimated by many researchers on time
series of returns and option prices. We mention Eraker (2004),
Broadie et al. (2007) and Dufays et al. (2022)

I There is common agreement that jump parameters are the most
difficult to pin down
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Standard and Bayesian Calibration

I The standard calibration consists in solving (1), where
Θ = {V0, k, θ, σ, ρ, µv, λ, µJ, σJ, ρJ} and where IVΘ

t,j is computed
numerically with the Fourier-cosine (COS) method. Then, We
proceed in two steps:
1. generate M parameters from p(Θ), compute the average MSE and
store the m = b

√
M/100c parameter sets with the smallest MSE

2. run m different optimizations (we use the Nelder-Mead algorithm)
using those points as initial guess

I For the Bayesian calibration we exploit the link between (1) and
a Gaussian likelihood function as follows:

L(Θ;D) =
1√

2πσ̃2(Θ)
exp

{
−
∑nT

t=1
∑nK

j=1(IVmktt,j − IVΘ
t,j)

2

2σ̃2(Θ)

}
(6)

and sample from the resulting posterior by SMC
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Application to Option Pricing

Simulated Data



Experiments Setup

i) We assess the convergence of the Bayesian algorithm to the
global optimum on simulated data (single day)

I We compute artificial IV surface for τ = {1, 2, 3, 6, 9, 12} months
and K = {80, 85, 90, 95, 100, 105, 110, 115, 120} using the parameters
estimated by Dufays et al. (2022)

I Since the likelihood is a complicated non-linear function of Θ, we
simply assign a Normal prior to all parameters

I We consider very conservative tuning parameters: N = 512
particles, NESS = 0.9 · N and NMH ≈ 15

ii) We compare our approach against the benchmark over 50
repetitions and different sets of parameters. We let N and M vary
and fix NESS = 0.7 · N and NMH ≈ 25
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i) Convergence to Global Optimum

Figure 1: Convergence of the parameters wrt γ on simulated data
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Notes. Red line denotes (5%, 95%) percentiles, blue line denotes the posterior mean,
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ii) Standard vs Bayesian

Table 1: Run-time accuracy comparison. Parameters: DJLR (Dufays et al.,
2022), BCJ (Broadie et al., 2007), E (Eraker, 2004)

Standard DJLR BCJ E
M IV RMSE time IV RMSE time IV RMSE time
400 2.52E-03 3.10 1.77E-03 4.20 1.38E-03 3.4
1600 1.05E-03 6.40 6.39E-04 8.90 4.44E-04 6.90
6400 5.14E-04 13.10 2.65E-04 19.00 1.74E-04 14.0
25600 9.91E-05 27.80 1.20E-04 38.6 8.15E-05 28.10
Bayesian DJLR BCJ E

N IV RMSE time IV RMSE time IV RMSE time
80 1.10E-05 3.10 1.86E-04 2.90 4.16E-05 2.80
160 8.52E-06 6.50 1.44E-04 6.00 3.61E-05 5.50
320 6.90E-06 13.20 1.05E-04 12.50 2.54E-05 12.60
640 3.36E-06 26.50 6.78E-05 26.70 2.12E-05 23.10

Notes. IV RMSE and computing time (in minutes) averaged across 50 repetitions
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Application to Option Pricing

S&P500 Data (March 3, 2021)



Bayesian Calibration (I)

Figure 2: Parameters convergence
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Bayesian Calibration (II)

Figure 3: Prior vs Posterior

Notes. The red line represents the prior, while the blue histogram represents the
posterior 12/19



Bayesian Calibration (III)

Figure 4: Reproducing the IV surface on March 3, 2021
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Application to Option Pricing

S&P500 Data (05.12.2007 - 03.03.2021)



Sequential Calibration: Standard vs Bayesian
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Cumulative Log-Likelihood Ratio

Figure 5: Cumulative log-likelihood ratio between the Bayesian and the
standard calibration
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Speeding Up:
Delayed-Acceptance MCMC +
Deep Learning



Pricing via Deep Learning

I With more complex models, the likelihood evaluation (involving
the calculation of option prices) will require either a numerical
solution of a ODE system or a large number of MC simulations
for each particle

I We suggest replacing the COS option pricing function by means
of Neural Networks (NN)

I Issue: how to perform the NN training effectively?
1. instead of randomly generating model parameters, we consider as
input the posteriors obtained with N = 800 particles over the
entire data set (i.e., 553 600 set of parameters)

2. we exploit closed-form risk-neutral cumulants as additional inputs

I We improve the MSE in the validation set when compared to the
traditional approach

appendix cumulants + validation 16/19



Delayed-Acceptance MCMC

I Bayesian calibration via DL is extremely fast, but its performance
highly depends on the NN training. On the other hand, the COS
method is slower but more accurate

I By using delayed-acceptance MCMC (Golightly et al., 2015) we
combine the speed of DL with the accuracy of COS

I At every MCMC step, we compute a first acceptance probability
with DL, and then we compute a second acceptance probability
with COS only for those particles accepted in the first stage

I In this way, we avoid expensive calculations for proposals that
are likely to be rejected. The algorithm still targets the correct
stationary distribution
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Results

Table 2: Time Normalized Implied Volatility Root Mean Square Error
(TNIVRMSE = time× IVRMSE) for different methods and different experiments

Simulated Data March 3, 2021 10.03.21–13.12.23
COS 5.85E-05 3.84E-02 6.59E-02
DL 1.96E-04 1.50E-03 1.50E-03

DL-COS 1.61E-04 1.90E-02 4.70E-02

Key takeaways:

1. On simulated data, it is not possible to achieve the same
accuracy as the COS-based approach

2. The DL-based method, equipped with an efficient NN training,
outperforms the alternatives on real data

3. The DL-COS approach can be effective if efficient NN training is
not available and when the computational cost increases
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Conclusions



Final Remarks

I We revisit the standard calibration approach by turning the
optimization problem into a Bayesian estimation task

I We show the superiority of our approach wrt the benchmark
both on simulated and real option data in terms of run-time
accuracy and stability of estimated parameters over time

I We can drastically reduce the computational time by exploiting
a NN trained on the sequential posterior estimated on real data

I To avoid a tight dependence on the NN training, it is possible to
use delayed-acceptance MCMC to ensure accuracy similar to the
COS while reducing computing time (from 20 to 50%)

Thank you!

19/19



Final Remarks

I We revisit the standard calibration approach by turning the
optimization problem into a Bayesian estimation task

I We show the superiority of our approach wrt the benchmark
both on simulated and real option data in terms of run-time
accuracy and stability of estimated parameters over time

I We can drastically reduce the computational time by exploiting
a NN trained on the sequential posterior estimated on real data

I To avoid a tight dependence on the NN training, it is possible to
use delayed-acceptance MCMC to ensure accuracy similar to the
COS while reducing computing time (from 20 to 50%)

Thank you!

19/19



Main References

Y. Cui, S. del Bano Rollin, and G. Germano.
Full and fast calibration of the Heston stochastic volatility model.
European Journal of Operational Research, 263(2):625–638, 2017.

P. Del Moral, A. Doucet, and A. Jasra.
Sequential Monte Carlo samplers.
Journal of the Royal Statistical Society: Series B, 68(3):411–436, 2006.

J. C. Duan, S. Li, and Y. Xu.
Sequential Monte Carlo optimization and statistical inference.
Wiley Interdisciplinary Reviews: Computational Statistics, 15(3):e1598, 2023.

A. Dufays, K. Jacobs, Y. Liu, and J. Rombouts.
Fast filtering with large option panels: Implications for asset pricing.
Journal of Financial and Quantitative Analysis, pages 1–56, 2023.

A. Golightly, D. Henderson, and C. Sherlock.
Delayed acceptance particle MCMC for exact inference in stochastic kinetic
models.
Statistics and Computing, 25:1039–1055, 2015.



Appendix



Appendix

A1. Risk-neutral Cumulants



SVCJ Model

I Under the SVCJ model the MGF of X is the following

mX(u) = EQ [euXτ ] = eA(u,τ)+B(u,τ)V0

where

∂A(u, τ)
∂τ

= ru+ kθB(u, τ)− λµ∗u+ λ

(
euµJ+u2σ2J /2

1− B(u, τ)µv − ρJµvu
− 1
)

∂B(u, τ)
∂τ

= − 1
2
(u− u2)− (k− ρσu)B(u, τ) + 1

2
σ2B(u, τ)2

with τ = T − t, T > t, and initial conditions A(u, 0) = B(u, 0) = 0

I Taking the derivative of logmX(u) we get the cumulants of X

cn,τ =
∂n logmX(u)

∂un
∣∣∣
u=0

=
∂nA(u, τ)
∂un

∣∣∣
u=0

+
∂nB(u, τ)
∂un

∣∣∣
u=0

V0

where ∂nA(u,τ)
∂un

∣∣∣
u=0

and ∂nB(u,τ)
∂un

∣∣∣
u=0

are known in closed-form

Back



Performance of the NN (Validation Set)

Figure 6: Ratio of MSE and standard deviation of the pricing functions
computed using NNs without and with the first four risk-neutral cumulants
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Appendix

A2. Feller Condition



Feller Condition

I In ALL numerical experiments (including the NN training), we do
not enforce the Feller condition

I Practical motivation: to obtain a good fit, a violation of this
condition is typically required, as shown for instance in Broadie
and Kaya (2007) and Cui et al. (2017)

I General warnings:
1. MC simulation should exploit suitable algorithms to handle this
violation (see Begin et al., 2015)

2. the characteristic function can be discontinuous and give wrong
prices with Fourier-based methods (see Cui et al., 2017)

3. if under P the Feller condition is violated, an equivalent
risk-neutral measure Q may not exists (see Desmettre et al., 2021)

I Since we are already working under Q, this does not pose any
theoretical problem (see Desmettre et al., 2021)
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A.3 Prior and Bounds



Prior and Bounds

Table 3: Prior specification. The mean of the prior, µ0, depends on the
experiment at hand. For instance, on real data µ0 is the average between the
parameters estimated in Broadie et al. (2007) and Eraker (2004)

Θ Distrib. σ0 Support Θ Distrib. σ0 Support
V0 Tr. Normal 0.05 (0,∞) k Tr. Normal 4.00 (0,∞)

θ Tr. Normal 0.10 (0,∞) σ Tr. Normal 1.00 (0,∞)

ρ Tr. Normal 1.00 (−1, 0) µv Tr. Normal 0.10 (0,∞)

λ Tr. Normal 3.00 (0,∞) µJ Normal 0.10 (−∞,∞)

σJ Tr. Normal 0.10 (0,∞) ρJ Tr. Normal 1.00 (−1, 0)

To prevent the possibility of obtaining totally unrealistic parameter
estimates, we impose additional upper and lower bounds for the
standard calibration

V0 ∈ (0, 1.5), k ∈ (0, 20), θ ∈ (0, 0.6), σ ∈ (0, 5), ρ ∈ (−1, 0),
µv ∈ (0, 2), λ ∈ (0, 10), µJ ∈ (−1, 1), σJ ∈ (0, 1.5), ρJ ∈ (−1, 0)
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