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Fixed rate mortgages and swaps

▶ Fixed rate mortgages expose financial institutions to interest rate
risk.

▶ The combination of fixed rate mortgages and suitable floating rate
notes (FRNs) is equivalent to (amortizing) interest rate swaps
(IRSs).

▶ The interest rate risk is fully hedged using (amortizing) swaps.

Figure 1: Equivalence between an IRS (right) and the sum of a fixed rate
interest-only mortgage and an FRN (left). Green: notional payments. Red: fixed rate
payments. Blue: floating rate payments.
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Embedded prepayment option

▶ Most mortgage contracts allow the owner to (partially) repay in
advance the mortgage notional, namely to prepay.

▶ The prepayment right is an embedded prepayment option (EPO).

▶ Prepayment leads to a mismatch between the cash flows of the
original hedge and of the mortgage −→ interest rate risk!

Figure 2: Effect of prepayment on future cash flows. Green: notional payments. Red:
fixed rate payments. Blue: floating rate payments. Yellow: notional prepayments.
Dotted: unrealized future cash flows.
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Stochastic notional profile

▶ Portfolio of mortgages: fixed rate K , contractual notional profile
Nc(t) (with N0 = Nc(t0)), and payment dates Tc = {t1, . . . , tn}.

▶ Annualized unconditional instantaneous prepayment at t, Λ(t).
▶ The realized notional, Nr (t), and the EPO notional, N(t) are:

Nr (t) =
[
Nc(t)− N0

∫ t

t0

Λ(τ)dτ
]+

, N(t) = Nc(t)− Nr (t).
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Figure 3: Notional profiles. Left: mortgage realized notional. Right: EPO notional.
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Model dynamics

▶ On the filtered probability space (Ω,F ,F,P), we consider the two
risk factors r(t) and b(t), t ∈ [t0, tn], with dynamics:

dr(t) = αP
r (θ

P
r (t)− r(t))dt + ηrdW

P
r (t), r(t0) = r0 ∈ R,

db(t) = αP
b(θ

P
b − b(t))dt + ηbdW

P
b (t), b(t0) = b0 ∈ R,

where dW P
r (t)dW

P
b (t) = ρdt, ρ ∈ [−1, 1].

▶ r(t) is the short rate, while b(t) is a non-hedgeable risk factor.
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Figure 4: Left: hedgeable risk factor r(t). Right: non-hedgeable risk factor b(t).
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Rate incentive function

▶ We define the rate incentive as:

ε(t) = K − κ(t) = g(t, r(t)),

with κ a reference rate and g a
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Figure 5: Sigmoid h.

▶ The annualized unconditional instantaneous prepayment Λ(t) is
modelled using a sigmoid h:

Λ(t) = h(t, ε(t), b(t)),

h(t, ϵ, b) = l +
u − l

2

[
tanh

(
a(ϵ+ b)

)
+ 1

]
, l , u, a ∈ R.

Leonardo Perotti Pricing and replication of the prepayment option



EPO cash flows and value

▶ The EPO has multiple cash flows, occurring at tj ∈ Tc , given by:

H(tj) =

[ ∫ tj

tj−1

N(t)dt

](
K − L(tj−1; tj−1, tj)

)
,

for the reference floating rate L(tj−1; tj−1, tj) fixed at time tj−1, and:

N(t) = Nc(t)− Nr (t) = min

(
Nc(t),N0

∫ t

t0

Λ(τ)dτ

)
.

▶ The EPO value process reads:

V (t, r , b,N) = EQ
[∑
tj>t

M(t)

M(tj)
H(tj)

∣∣∣F(t)

]
,

where Q is a – non unique – equivalent martingale measure (EMM)
associated with the money savings account M(t) as numéraire.
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Cash flows and value process
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Figure 6: Left: cash flows. Right: value process.
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Multiple risk neutral measures

▶ The valuation task requires the knowledge of a risk neutral dynamics:

dr(t) = (· · · )dt + ηrdW
Qλ
r (t), r(t0) = r0 ∈ R,

db(t) = (· · · )dt + ηbdW
Qλ

b (t), b(t0) = b0 ∈ R.

▶ The change of measure is driven by the relationship:

dWQλ
r (t) = λr (t)dt + dW P

r (t),

dWQλ

b (t) = λb(t)dt + dW P
b (t).

▶ Since b is non hedgeable, the market price of risk λb is
undetermined.

▶ The value process is a function of λb, namely V (t, r , b,N;λb).
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Robust (static) replication

▶ The wealth invested in the EPO and in the replication are:

WEPO(t;λb) = V (t;λb) + CEPO(t),

WREP(t;w) =
∑
i

wiVi (t) + CREP(t),

where wi and Vi are notional and value of the i-th hedging
instrument, and CEPO and CREP are suitable cash accounts.

▶ A loss function is defined as:

L(w;λb) =

∫ tn

t0

EQλ

[(
WEPO(t;λb)−WREP(t;w)

)2]
dt.

▶ The optimal robust replication w∗ is obtained – if it exists – solving:

inf
w
sup
λb

L(w;λb).
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“Affine” change of measure

▶ By restricting λb to affine processes λb(t) = λ0 + λ1b(t), with
(λ0, λ1) ∈ R2, the risk neutral dynamics for b reads:

db(t) = αQλ

b (θQλ

b − b(t))dt + ηbdW
Qλ

b (t),

for αQλ

b = αP
b + ηbλ1 and θQλ

b =
αP

bθ
P
b−ηbλ0

α
Qλ
b

.

▶ We bound the search domain to:

Dλ =
{
(λ0, λ1) : 0 < αQλ

b ≤ αb, |θQλ

b | ≤ θb

}
, αb, θb ∈ R,

with αb and θb bounds depending on the risk attitude/belief of the
seller.
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Restricted domain

Figure 7: Restricted search domain Dλ.
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“Optimal” solution and replication bounds

▶ We solve the restricted problem infw maxλb∈Dλ
L(w;λb) iteratively

valuing the replication loss on a finite grid Dλ,0 ⊂ Dλ.

▶ We observe a bang-bang behavior: the optimal replication under one
measure is the worst against another one.

Figure 8: Discrete domain Dλ,0 and “worst” measures.
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Loss – swap
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Figure 9: Replication with single swap.
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Loss – swaption
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Figure 10: Replication with swap and swaption.
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Replication paths
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Figure 11: Left: single swap. Right: swap and swaption.
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