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Motivation

Recent studies have shown that the standard models do not offer sufficient
flexibility in pricing advanced derivatives, e.g., options on S&P and VIX.

In Carr and Wu (2007), where the problem of insufficient skew was reported, and
the remedy in terms of randomization was suggested: “it would be tempting to try
to capture stochastic skewness by randomizing the mean jump size parameter (...)
However, randomizing either parameter is not amenable to analytic solution
techniques that greatly aid econometric estimation.”

The concept of randomizing is more fundamental, i.e., it represents the
incorporation of the uncertainty of potentially hidden states that are not adequately
captured by deterministic parameters.

We can also consider randomization as a regime-switching method, with the
states determined by the randomizing random variable.

In this talk, we present the Randomized-Affine-Diffusion (RAnD) method Grzelak
(2022a), which allows for efficient pricing of Affine Models with Random
parameters.
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Affine Models

The stochastic model of interest can be expressed by the following stochastic
differential form:

dX(t) = µ(t ,X(t))dt + σ(t ,X(t))dW̃(t) + J(t)TdXP(t),

where W̃(t) is a column vector of independent Brownian motions, µ, is a drift, σ
corresponds to volatility, and XP(t) is a vector of orthogonal Poisson processes
characterized by an intensity vector ξ.

We consider an orthogonal vector Θ = [ϑ1, . . . , ϑn]
T, n ∈ N, where each ϑi is an

independent, time-invariant, random variable 1.

A realization of ϑi we indicate by θi , ϑi(ω) = θi .

We assume the model is affine for a realization of a random parameter.

1We consider here n ∈ N stochastic parameters, this is however not a necessary constraint.
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Affine Models

Affinity conditions require the following linearity of the model:

µ(t ,X(t)) = a0(θ) + a1(θ)X(t),
r(t ,X(t)) = r0(θ) + r1(θ)

TX(t),
(σ(t ,X(t))σ(t ,X(t))T)i,j = (c0(θ))i,j + (c1(θ))

T
i,jXj(t),

ξ(t ,X(t)) = l0(θ) + l1(θ)X(t).

For a given realization of Θ, θ, we consider Xθ(t) := X(t)|Θ = θ,
Jθ(t) := J(t)|Θ = θ, the discounted characteristic function is also of the following
form (Duffie et al., 2000):

ϕXθ
(u; t ,T ) = Et

[
e−

∫ T
t r(s)ds+iuTXθ(T )

]
= eA(u;τ,θ)+BT(u;τ,θ)Xθ(t),

with the expectation under risk-neutral measure Q for τ = T − t .
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Affine Models and Randomization

The coefficients A := A(u; τ, θ) and B := BT(u; τ, θ), satisfy complex-valued
Riccati ODEs (Duffie et al., 2000):

dA
dτ

= −r0(θ) + BTa0(θ) +
1
2

BTc0(θ)B + lT
0 E

[
eJθ(τ)B − 1

]
,

dB
dτ

= −r1(θ) + a1(θ)
TB +

1
2

BTc1(θ)B + l1(θ)TE
[
eJθ(τ)B − 1

]
,

where the expectation, E[·], is taken with respect to the jump amplitude Jθ(t).

Then, for stochastic parameter ϑ, the ChF is given by:

ϕX(u; t ,T ) := Et

[
e−

∫ T
t r(s)ds+iuTX(T )

]
= Et

[
Et

[
e−

∫ T
t r(s)ds+iuTXθ(T )

∣∣Θ = θ
]]
.

The inner expectation can be recognized as the conditional ChF; thus, by
definition of the ChF and integration over all the parameter space, we find,

ϕX(u; t ,T ) = Et
[
ϕX|Θ(u; t ,T )

]
=

∫
Rn
ϕX|Θ=θ(u; t ,T )fΘ(θ)dθ.

We aim to provide numerically efficient methods for the computation of
randomized ChF.
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Affine Models and Randomization- The RAnD Method

To determine the ChF of an affine model with a randomized parameter, one needs
to integrate the parameter’s probability density function- computationally
expensive!

This can be avoided, i.e., the complicated integrand can be factored into a set of
pairs {ωn, θn}N

n=1, N ∈ N, with a nonnegative “weights” function, ωn ≥ 0, such that∑N
n=1 ωn = 1 and specific, collocation, points θn,

ϕX(u; t ,T ) =

∫
Rn
ϕX|Θ=θ(u; t ,T )fΘ(θ)dθ =

N∑
n=1

ωnϕX|ϑ=θn (u; t ,T ) + ϵN .

Once the number of evaluations, N, is low, we can significantly reduce the
computational cost. The key element here, however, is that the pairs, {ωn, θn}N

n=1,
cannot be chosen arbitrarily but need to be computed based on the parameter’s
distribution, ϑ.

We follow the approach presented in (Golub and Welsch, 1969) where ωn are the
quadrature weights determined based on the moments of the random parameter,
ϑ.

Mixture distribution models have been studied in Brigo and Mercurio (2002),
where the sum of (log)normal PDFs was analyzed. The model, although very
flexible, was limited by a large number of model parameters.
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Randomized Affine Models- The RAnD Method

Theorem (ChF for Randomized Affine Jump Diffusion Processes Grzelak
(2022a))

Consider a random variable ϑ, with its PDF, fϑ(x), CDF, Fϑ(x) and a realization θ,
ϑ(ω) = θ such that for some N ∈ N the moments are finite, E[ϑ2N ] <∞. Assuming that
the corresponding ChF, ϕX|ϑ=θ(·), is well defined and 2N times differentiable w.r.t. θ,
the unconditional ChF for the randomized X, exists and is given by:

ϕX(u; t ,T ) =
N∑

n=1

ωnϕX|ϑ=θn (u; t ,T ) + ϵN =
N∑

n=1

ωneA(u;τ,θn)+BT(u;τ,θn)X(t) + ϵN ,

where

ϵN =
1

(2N)!

∂2N

∂ξ2N ϕX|ϑ=ξ(u; t ,T ),

for a < ξ < b and where the pairs {ωn, θn}N
n=1 are the Gauss-quadrature weights and

the nodes based on the parameter distribution, fϑ(·), determined by
ζ(ϑ) : R → {ωn, θn}N

n=1.

We report exponential convergence!
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Affine Models and Randomization

The ChF of the randomized AD model is a weighted sum of a set of conditional
ChFs evaluated at certain realizations, θn, of the underlying random parameter ϑ.

The theorem shows the exponential decay of the error in terms of N-suggesting
high precision for low N.

When analytical moments are available, the computation of the corresponding
points only requires the computation of a Cholesky decomposition and certain
eigenvalues; it is, therefore, computationally cheap.

Variables under closed under linear transformations allow for the tabulation of the
corresponding quadrature points!

Table: Selected distributions for the stochastic parameters.

name raw moment domain

ϑ ∼ U([â, b̂]) E[ϑn] = b̂n+1−ân+1

(n+1)(b̂−â)
[â, b̂]

ϑ ∼ exp(â) E[ϑn] = n!
ân R+

ϑ ∼ N (0, 1) E[ϑn] = (n − 1)!! if n even; 0 otherwise R
ϑ ∼ Γ(â, b̂) E[ϑn] = b̂nΓ(n + â)/Γ(b̂) R+

ϑ ∼ χ2(â, b̂) E[ϑn] = 2n−1(n − 1)!(â + nb̂) +
∑n−1

j=1
(n−1)!2j−1

(n−j)! (â + j b̂)E[ϑn−j ] R+ ∪ {0}
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PDF of Randomized Models
The application of Fourier inversion to the randomized ChF yields,

fX(x) =
1

2π

∫
R

e−iux
N∑

n=1

ωnϕX|ϑ=θn (u; t ,T )du =
N∑

n=1

ωnfX|ϑ=θn (x).

Since ω1 + · · ·+ ωN = 1, ωn ≥ 0, for n = 1, . . . ,N, which implies the density of the
affine, randomized, system of SDEs, X(t) can be expressed as a, possibly
multi-modal, mixture distribution.
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Figure: mixture PDF with three PDFs: X ∼ N (6, 1), Y ∼ N (7, 1), Z ∼ N (10, 1.4).
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Pricing with Randomized Models

The pricing will rely on a Fourier inversion method, namely the COS method (Fang
and Oosterlee, 2008).

The generic pricing equation is given by:

V (t0) = e−r(T−t0)
Nc−1∑′

k=0

ℜ
[
ϕX

(
kπ

b − a
; t0,T

)
exp

(
−ikπ

a
b − a

)]
· Hk + ϵc1 ,

where Hk for k ≥ 0 are known in closed-form coefficients corresponding to the
payoff function.

We will use the Hk coefficients derived for European-style call/put options and
options on VIX.

Parameters, a and b are the tuning parameters used to determine the integration
range Junike and Pankrashkin (2022); while the error ϵc1 , is exponentially decaying
in Nc .
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Randomized Black-Scholes Model

We consider the randomized Black-Scholes, with σ random, and follow a uniform
distribution, σ ∼ U([·, ·]).
The randomized Black-Scholes model follows the following SDE:

dS(t) = rS(t)dt + σS(t)dW (t), σ ∼ U([â, b̂]), â, b̂,∈ R+.

The corresponding ChF for X (t) = logS(t), reads:

ϕX (u; t0,T ) =
N∑

n=1

ωn exp
(

iuX (t0) +
(

r − 1
2
σn

2
)

iu(T − t0)−
1
2
σn

2u2(T − t0)
)
+ ϵN .

In the experiment we take: σ ∼ U([0.1, 0.45]).

We note that {ωi , θi}N
i=1 can be computed for U([0, 1]) and then scaled

appropriately.

The Black-Scholes model with discrete σn realizations leads to the parametric
local-volatility type of model Brigo and Mercurio (2002).
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Implied Volatility Surface for the Randomized BS Model

Figure: Right: Implied volatility surface for the RAnD BS model for σ ∼ U([â, b̂]).
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The RAnD Bates Model

The Bates model Bates (1996), under the Q measure, is described by the
following system of SDEs:

dS(t)/S(t) =
(

r − λE
[
eJ − 1

])
dt +

√
v(t)dWx(t) +

(
eJ − 1

)
dXP(t),

dv(t) = κ (v̄ − v(t)) dt + γ
√

v(t)dWv (t),

with Poisson process XP(t), intensity λ, and normally distributed jump sizes,
J∼ N (µj , σ

2
j ), with E[eJ ] = eµJ+

1
2 σ

2
J , and ρdt = dWx(t)dWv (t).

XP(t) is assumed to be independent of the Brownian motions and the jump sizes.

Under this model, the variance process follows the non-central chi-square
distribution, χ2(δ, κ̄(·, ·)), with δ degrees of freedom and non-centrality parameter
κ̄(t0, t),

v(t)|v(t0) ∼ c̄(t0, t)χ2(δ, κ̄(t0, t)),

where

c̄(t0, t) =
γ2

4κ
(1 − e−κ(t−t0)), δ =

4κv̄
γ2 , κ̄(t0, t) =

4κe−κ(t−t0)v(t0)
γ2(1 − e−κ(t−t0))

.
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Implied Volatility Surface for r-Bates Model

Figure: Implied volatility surface for RAnD Bates model. Left panel: randomized vol-vol,
γ ∼ Γ(1, 0.5). Right panel: randomized jump’s mean, µJ ∼ N (−0.1, 0.2). Other model
parameters are r = 0, µJ = −0.1, σJ = 0.06, λ = 0.08, κ = 0.5, γ = 0.5, v̄ = 0.13, ρ = −0.7,
T = 1/12, and v0 = 0.13.
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Random Parameters and Impact on IVs
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Figure: Impact of randomized parameters on implied volatilities. Left: randomized vol-vol, γ.
Right: randomized initial vol, v0.
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Random Parameters and Impact on IVs
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Figure: Impact of randomized parameters on implied volatilities. Left: randomized correlation, ρ.
Right: randomized jump’s mean, µJ .
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Pricing of Options on VIX
For a given fixed time-horizon [t ,T ], the volatility index of an asset S(t), denoted
as vix(t ,T ), is defined as:

vix2
(t ,T ) = 1002 × −2

T − t
Et

[
log

S(T )

S(t)

]
,

where Et [·] indicates the expectation taken under under the risk-neutral measure
Q and the natural filtration F(t).

Under the Bates model, the VIX is expressed by:

vix2
(t ,T ) = 1002 × vix2(t ,T ),

vix2(t ,T ) = a(t ,T )v(t) + b(t ,T ) + c,

with deterministic functions a(t ,T ), b(t ,T ) and c.

A call option on VIX is then given as:

Vvix(t) = e−r(T−t)Et

[
max(vix(T ,T + δT )− K , 0)

]
= 100 × e−r(T−t)

∫
R+

max(
√

v − K , 0)fvix2(v ;T ,T + δT )dv .

At this point we need to derive coefficients Hk for the COS method.

19 / 37



Pricing of Options on VIX

Since we can utilize the analytically known distribution for vix, the pricing may also
be performed by directly integrating the payoff function and employing the PDF:

Vvix(t) = 100 × 2α1e−r(T−t)
∫

K
x(x − K )fχ2(δ,κ̄(t,T ))

(
α1(x2 − α2)

)
dx .

With one of the model parameters stochastic, the RAnD pricing equation reads:

Vvix(t) = 100 × 2α1e−r(T−t)
N∑

n=1

ωn

∫
K

x(x − K )fχ2(δ,κ̄(t,T ))

(
α1(x2 − α2); θn

)
dx ,

where θn in fχ2(·,·) (·; θn) indicates a particular realization of the model parameter
and ωn corresponds to its weight.

Once the pricing equations are known, we can perform the model calibration.
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Calibration to Options on SPX and VIX

Table: Parameters determined in calibration of S&P and VIX

Calibrated RAnD Bates parameters
date κ v0 v̄ ρ µJ σJ λ γ

02/02/2022 0.5 0.1702 0.23 -0.65 −0.25 0.05 0.25 γ ∼ U([0.01, 2.3])
13/05/2022 0.14 0.2672 0.28 -0.8 −0.25 0.02 0.1 γ ∼ U([0.002, 2.1])
14/07/2022 0.5 0.2502 0.10 -0.85 −0.25 0.05 0.15 γ ∼ U([0.05, 1.4])
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Calibration to Options on SPX and VIX
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Figure: Calibration results of the RAnD Bates model. The implied volatilities for S&P and ViX were
obtained on 02/02/2022. Dotted lines indicate bid-ask spreads. Left: S&P, Right: VIX.
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Calibration to Options on SPX and VIX
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Figure: Calibration results of the RAnD Bates model. The implied volatilities for S&P and ViX were
obtained on 13/05/2022. Dotted lines indicate bid-ask spreads. Left: S&P, Right: VIX.
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Calibration to Options on SPX and VIX
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Figure: Calibration results of the RAnD Bates model. The implied volatilities for S&P and ViX were
obtained on 14/07/2022. Dotted lines indicate bid-ask spreads. Left: S&P, Right: VIX.
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Pricing Equations for Randomized Short-Rates

The RAnD method can also be applied in the world of interest rates, in Grzelak
(2022b), "Randomization of Short-Rate Models, Analytic Pricing and Flexibility in
Controlling Implied Volatilities".

The randomization does not need to occur at the ChF level, but it can be applied
to any conditional expectation.

Consider a random variable ϑ, defined on some finite domain Dϑ := [a, b], with its
PDF, fϑ(x), CDF, Fϑ(x) and a realization θ, ϑ(ω) = θ such that for some N ∈ N the
moments are finite, E[ϑ2N ] <∞.

V (t , r(t ;ϑ)) =
N∑

n=1

ωnV (t , r(t ; θn)) + ϵN ,

where the error ϵN is defined as:

ϵN =
1

(2N)!

∂2N

∂ξ2N V (t ; r(t , ϑ = ξ)), a < ξ < b.

As indicated Piterbarg (2003), averaging option prices may not be valid for
non-standard options.
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PDF of Randomized Models
Under the HJM framework and the arbitrage-free condition for the drift in, the
Hull-White model is specified by:

γ(t ,T ) = η · e−λ(T−t), t < T ,

We consider three different randomization cases: the randomization of the
volatility parameter, η, the mean-reversion, λ, or the randomization of both
parameters using bivariate distribution:

η
d
= ϑ1, or λ

d
= ϑ2, or λ|η d

= ϑ2|ϑ1.

For constant realizations of the randomized parameter, the SDE reads:

dr(t) = λ(ψ(t)− r(t))dt + ηdW (t), r0 ≡ f (0, 0),

with

ψ(t) = f (0, t) +
1
λ

f (0, t) +
η2

2λ2

(
1 − e−2λt

)
, f (0, t) = −∂ logP(0, t)

∂t
,

As before, we can show that the PDF of the randomized HW model will be a
convex sum of constituent PDFs:

fr(T )(x) =
N∑

n=1

ωnfr(T ;θn)(x) + ϵF
N .
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Dynamics of the Randomized HW model

We consider a sequence of HW model processes, r 1(t), . . . , rN(t), corresponding
to parameter realizations, and the probability density relation,

fr(T )(x) =
N∑

n=1

ωnfr(T ;θn)(x).

We want to determine the corresponding SDE for the rHW process, r(t). Formally,
we seek an SDE, with the solution and where each of the constituent processes,
r n(t), is driven by the HW model.

Thus, we consider the following process,

dr(t) = λ(t , r(t))dt + η(t , r(t))dW (t), r(t0) = f (0, 0),

with some state-dependent drift, λ(t , r(t)), and volatility, η(t , r(t)), and where
Brownian motion W (t) is common for all the underlying HW processes.
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Dynamics of the Randomized HW model

Proposition (Local volatility process for the HW model with randomized
volatility parameter, η)
Let us assume a sequence of positive constants ηn, n = 1, . . . ,N. Then, the SDE

dr(t) = λ(t , r(t))dt + η(t , r(t))dW (t), r(t0) = f (0, 0),

with

λ(t , y) =
N∑

n=1

Λn(t , y)λ(ψn(t)− y), η2(t , y) =
N∑

n=1

η2
nΛn(t , y),

where:

Λn(t , y) =
ωnfr(t ;ηn)(y)∑N

n=1 ωnfr(t ;ηn)(y)
, fr(t)(y) =

N∑
n=1

ωnfr(t ;ηn)(y),

where
∑N

n=1 ωn = 1 for ωn ≥ 0, n = 1, . . . ,N with fr(t ;ηn)(x) the PDF of the HW model
with dynamics, given by:

dr n(t) = λ(ψn(t)− r n(t))dt + ηndW (t), r n(t0) = f (0, 0),

where r n(t) := r n(t ; ηn) with ψn(t) = f (0, t) + 1
λ

f (0, t) + η2
n

2λ2

(
1 − e−2λt) .
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Pricing of Swaptions under the rHW Model

Lemma (Pricing of Swaptions under randomized Hull-White model)

Consider the rHW model, with parameters {λ, η} and the randomizing random variable
ϑ, which randomizes either of the model parameters. For a unit notional, a constant
strike, K , option expiry T = Ti−1 and a strip of swap payments T = {Ti , . . . ,Tm}, with
Ti > Ti−1 and accruals τi = Ti − Ti−1, the prices of swaption payer and receiver,
P/R := Payer/Receiver, are given by:

V Swpt
P/R (t0,T , T ,K ;ϑ) =

N∑
n=1

ωn

m∑
k=i

ck V Z
χ(t0,T ,Tk , K̂k (θn); θn)),

with a swaption payer, P, for χ = −1, swaption receiver, R, with χ = 1, where V Z
χ(·) is

the option on the ZCB and where the strike price
K̂k (θn) = exp (A(T ,Tk ; θn) + B(T ,Tk ; θn)r∗n ). Here, r∗n is determined by solving, for
each parameter realization θn, the following equation:

1 −
m∑

k=i

ck exp
(

A(T ,Tk ; θn)− B(T ,Tk ; θn)r∗n
)
= 0, n = 1, . . . ,N,

where A(T ,Tk ; θn) and B(T ,Tk ; θn) are known in the closed-form.
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Hull-White vs. Randomized Hull-White Models

Figure: LEFT: Hull-White, RIGHT: Randomized Hull-White.
Swaption volatility evolution for the HW and rHW models implied by the shifted Black’s model. The
simulation was performed for varying swaption option expiry, T , and a fixed tenor of 1y . The
parameters specified in the experiment are: for the HW model: η = 0.005, λ = 0.001 and for the
rHW model: η = 0.005 and λ ∼ U([−0.15, 0.6]). In the experiment, the implied volatilities are
computed with zero shift parameter, s = 0.
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Swaptions: Calibration Quality
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Figure: LHW: randomized volatility parameter η; RHS: randomized mean-reversion parameter λ
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Swaptions: Calibration Quality
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Figure: Calibration results of the HW and the rHW models. The market implied volatilities for
swaptions were obtained on 18/08/2022 for the USD market. Option expiry: T = 1y and T = 2y
and the implied volatility shift: s = 1%. Calibrated parameters are presented in Table 3.
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Swaptions: Calibration Quality
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Figure: Calibration results of the HW and the rHW models. The market implied volatilities for
swaptions were obtained on 18/08/2022 for the USD market. Option expiry: T = 15y and
T = 20y and the implied volatility shift: s = 1%. Calibrated parameters are presented in Table 3.
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Swaptions: Calibrated Parameters

Table: Calibration of the HW and rHW model: parameters determined in swaption calibration.

Hull-White RAnD Hull-White
T , expiry η λ η λ

1y 0.0094 0.0090 0.0091 λ ∼ N (0.1, 0.452)

2y 0.0082 0.0035 0.0080 λ ∼ N (0.1, 0.332)

5y 0.0069 0.0020 0.0079 λ ∼ N (0.1, 0.162)

8y 0.0067 0.0095 0.0080 λ ∼ N (0.1, 0.122)

10y 0.0067 0.0090 0.0082 λ ∼ N (0.1, 0.112)

15y 0.0064 0.0080 0.0085 λ ∼ N (0.1, 0.092)

20y 0.0060 0.0080 0.0086 λ ∼ N (0.1, 0.082)

Note that the mean for λ has been fixed! Therefore the number of degrees of
freedom is equal to the case for the standard Hull-White model.
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PDF of Randomized Models

We have introduced the RAnD method for efficient computation of the affine
models with random parameters.

The proposed framework is generic and can be applied to any stochastic model,
even outside the class of affine diffusions.

As long as the randomizing random variable gives rise to finite, preferably
closed-form, moments, one can price European-style options efficiently.

The heart of the method is formed by a few critical collocation points to recover the
characteristic function.

Fast computation of the characteristic function is possible because the method
converges exponentially in the number of expansion terms.

We have shown that the randomization of stochastic models provides a breeze of
fresh air to the class of affine models.

The application of the RAnD method to the Bates model shows that randomization
allows for simultaneous calibration to S&P and VIX options-a heavily desired
feature of modern models.

Finally, we have illustrated that the model randomized Hull-White model allows for
almost perfect calibration to swaption implied volatilities, while the model stays
analytic and computationally efficient.
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