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2D Black—Scholes PDCP

2D Black—Scholes partial differential complementarity problem (PDCP) for two-asset
American-style option value u(sy, sy, t) at time T — t:

0

uz0, W Au (w-0) (g’;—Au)

valid pointwise for (s, sp,t) whenever s >0, s, > 0,0 <t < T where

2 2 2
Au = 102522 + p010251$2£ + leszg + rslﬁ + r52@ —ru
27171 8512 0s10sy = 2 272 8522 0s1 059

and initial condition given by payoff

u(s1, s2,0) = o(s1,s2)
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Our main interest is in the approximation of the Greeks Delta and Gamma:

du ou %u %u %u
P Ry VA R UL S U _ocu
1= 5y P27 5, 11 PR 2= 50,0 2 252

They are all part of Au.

Spatial discretization by second-order central finite differences on smooth, nonuniform,
m x m grid in a truncated spatial domain [0, Spax] X [0, Smax] yields the semidiscrete
PDCP system

U(t) = Uo, U'(t) = AU(t), (U(t) — Uo) " (U'(t) — AU(t)) = 0
for 0 < t < T with U(0) = Up. Matrix A and vector Uy are given.

Semidiscrete approximations to Delta and Gamma are parts of the matrix-vector
product AU(t).
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Temporal discretization methods
Consider first the system of ODEs
U(t)=AU(t) (0<t<T).

Parameter 6§ > 0.

Temporal grid points 0 =ty < t; < tp < ... < tyy = T with step sizes
At, = t, — th_1.

0-method:
(I —0At,A) Uy = Up1 + (1 = 0)At,AUp—.

For @ = 1: backward Euler (BE).
For § = 3: Crank—Nicolson (CN) or trapezoidal rule (TR).
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Diagonally implicit Runge-Kutta (DIRK) method:
(I —0At,A) Y = Up—1 + (1 — 0)At,AUp—1,

(I —0At,A) Z = Up—1 + 3At,AUn—1 + (3 — 0) At,AY,
Up = Z.

Introduced by Cash (1984). Second-order for any 6.
A-stable whenever 6 > % and L-stable if and only if § =1 + %\/ﬁ

Independently studied for American option valuation by Khaliq, Voss & Kazmi
(2006) and Ikonen & Toivanen (2007, 2009) with § = 1 — 3+/2.

Le Floc’h (2014) considered the TR-BDF2 method, which is equivalent to this.

The DIRK method is also the underlying implicit method of two well-known ADI
schemes in finance: Hundsdorfer—Verwer (HV) and modified Craig—Sneyd (MCS),
In 't Hout & Welfert (2007, 2009).

6/17



Adaptation of temporal discretization methods to the semidiscrete PDCP system by
penalty approach, Zvan, Forsyth & Vetzal (1998, 2001), Forsyth & Vetzal (2002).

Let Large = 107 and tol = 10~7. Set 00 = .

0-P method:
(1 = 08t A+ PO) YD) = ) 4 (1= 0)At,A Uy + PX U

for k=0,1,...,k—1 and U,,zY(“)

with Y(© — 0,,_1 and P the diagonal matrix with i-th diagonal entry
plk) _ {Large if Yi(k) < U, ,

i

0 otherwise.

Convergence criterion

max
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DIRK-P method:
(l —0AtA + P(k)) ytD) — Un—l +(1-0)At,A Un—l + PR Uy

for k=0,1,...,ks1 —1 and )A/zY(“l),

(1 = 00t A+ QW) ZK+D) = Uy g + LALAUs 1 + (2 = 0) At,AY + QK U

| for k=0,1,...,k0 —1 and U,,zZ(’”)

where Z© = {J,_; and Q) the diagonal matrix with i-th diagonal entry

ot _ [ Laree if 2% < Uy,
o 0 otherwise.

Iterative linear systems solver: BiCGSTAB with ILU preconditioner.
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Numerical study
Four key instances:

BE-P: 0-P method with 6 = 1
CN-P: 0-P method with 6 = 1
DIRKa-P: DIRK-P method with § = 1 —
DIRKb-P: DIRK-P method with 6 = %

first-order, L-stable)

second-order, A-stable)
second-order, L-stable)
second-order, A-stable)

3V2

~ o~~~

Rannacher smoothing: first two time steps of CN-P are replaced by BE-P.

In addition, for improved convergence behaviour of second-order methods, apply
nonuniform temporal grid

n\ 2

t, = (N) T (n=0,1,2,...,N),

Forsyth & Vetzal (2002), Ikonen & Toivanen (2009), Reisinger & Whitley (2014).
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. s1+ s
American put-on-the-average: payoff ¢(si,sp) = max |0, K — %

Parameter set: 01 = 0.30, 0o = 0.40, p =0.50, r =0.01, T =0.5, K = 100.

| i
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Early exercise region (grey) and region of interest (blue):
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We study temporal discretization errors in maximum norm at t =ty = T
on ROI 0.9K < 51,5 < 1.1K for m x m spatial grids and increasing m.

Convergence in stiff sense: temporal error constant independent of m.
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m = 400 and DIRKb-P with Rannacher

smoothing
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Conclusions

If ROI lies well within the continuation region, then

m BE-P method: first-order convergence in the stiff sense for the option value and all
Greeks Delta and Gamma

m CN-P method: second-order convergence for Deltas and Gammas only if N = m/\
with problem-dependent constant A > 0 (Le Floc’h 2014, Reisinger & Whitley 2014)

m DIRKa-P method: second-order convergence in the stiff sense for the option value
and all Greeks Delta and Gamma

m DIRKb-P method: second-order convergence in the stiff sense for the option value
and all Greeks Delta and Gamma provided Rannacher smoothing
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