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Classical optimal stopping problems

▶ Optimally stop a reward process Zt at some predetermined
moments:
▶ Bermudan, stop rewards Zt at predetermined t ∈ {t1, ..., tk}.
▶ American, stop rewards Zt at any t ∈ [0, T ].

▶ Moments may not be predetermined in practice:
▶ Practical constraints: illiquid markets, real options.
▶ Inherent randomness: catastrophe derivatives, uncertainty of

success.
▶ We look at a generalization of Bermudan stopping problems:

▶ (Some of) the opportunities arrive randomly
▶ The terms opportunities, buyers and arrivals will be associated

with each-other for the purpose of this talk.
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Leading example: valuable asset

▶ Suppose you have an exclusive, illiquidly traded house or piece
of art.

▶ May be sold at the prevailing market price Xt .
▶ Selling requires a buyer to arrive.
▶ Attach a personal, non-monetary value C , e.g. derived from

utility, so only sell if Xt > C .
▶ Reward process: Zt = e−rt(Xt − C)+, a call-option arises

naturally here.
▶ Total value of the house: value of optimally stopped reward

process + C .
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Feedback

▶ Arrivals of opportunities and prices may be interrelated.
▶ E.g. in our example

▶ If prices are high, fewer buyers may arrive.
▶ When buyers arrive this may reveal new information, affecting

prices.
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Literature

Special case: opportunities arrive according to a Poisson process.
▶ Dupuis and Wang (2002): Perpetual call option, independent

arrivals
▶ Hobson (2021): Shape of the value function, arrival rate

depends on price dynamics
▶ Lange et al. (2020): develop a finite difference method for

independent arrivals.
Related problems:
▶ Matsumoto (2006): Optimal portfolio selection, independent

randomly arriving adjustment dates
▶ Pham and Tankov (2008, 2009): Optimal investment and

consumption choice
Our contribution:
▶ Tackle more general feedback/dependence structures
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Problem formulation

▶ Sequence of (Ft)t≥0-stopping times 0 < τ1 < τ2 < · · · , e.g.
event times of a Poisson process, where τk → ∞ a.s.

▶ Fixed time-horizon T < ∞.
▶ Zt = f (t, Xt) non-negative reward process where Xt is a

(Ft)t≥0-adapted Markov process.
▶ Problem: optimally stop Zt at one of the stopping times

τk ≤ T to receive Zτk .
▶ Question: what is the optimal value

Y0 = supτ∈T (τ1,τ2,...) E[Zτ1τ≤T ]?
▶ Question: what is the corresponding optimal stopping rule?
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Numerical approaches

▶ When we allow for feedback, we are typically thinking about
higher-dimensional situations (in the order of dimensions
4-10).

▶ Some possible approaches would be:
▶ Bermudan/American approximation: may be inefficient,

especially when there are only few expected arrivals.
▶ Equivalent problem: American optimal stopping problem with

Z̃t = Zt1{∃k, t=τk }: this is a continuous-time optimal stopping
problem with làdlàg rewards.

▶ Finite-difference or finite-elements methods (such as Lange
et al. (2020)): we face the curse of dimensionality, especially in
the face of feedback.

▶ We thus need some other approach, more tailored to the
problem at hand!
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Changing perspectives

▶ Observation: The dynamics of interest all happen at the
random times.

▶ We can focus our attention on these random times, jumping
from random time to random time.

▶ New process {Zτk }k∈N and filtration {Fτk }k∈N.
▶ This is now a discrete-time, infinite horizon problem!
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Equivalence

▶ Original problem: Y0 = supτ∈T (τ1,τ2,...) E[Zτ1τ≤T ].
▶ N , the set of discrete {Fτk }k∈N-stopping times.

Proposition (Equivalence)
Y0 = supn∈N E [Zτn1τn≤T ] .
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Finite-horizon approximation

▶ Some algorithms require a discrete-time, finite horizon
problem

▶ We can pass to a finite horizon problem:
▶ Suppose E[supi Z 2

τi
] ≤ B2 < ∞

▶ For K sufficiently large, Y (K)
0 := supτ∈T (τ1,...,τK ) E[Zτ1τ≤T ]

can then be made ε-close to Y0.
▶ In fact:

Proposition (Truncated equivalence)

Y (K)
0 = supn∈N , n≤K E [Zτn1τn≤T ] .
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Duality

Proposition (Weak and strong duality)
Let MUI

0 be the collection of uniformly integrable
{Fτk }k∈N-martingales that start from 0. Suppose that
E[supi Z 2

τi ] ≤ B2 < ∞ and
∑∞

j=0 P(τj ≤ T )α < ∞ for some
0 < α < 1/2. Then:

i) Weak duality: It holds that Y0 = infM∈MUI
0
E[supi(Zτi − Mi)].

ii) Strong duality: Let M◦
i :=

∑i
j=1 Yj − EFτj−1

[Yj ], i ≥ 1,
M◦

0 = 0. Then it holds that M◦ ∈ MUI
0 and that

Y0 = supi≥0 (Zτi − M◦
i ) almost-surely.

▶ Interpretation of the new condition: the distribution of
NT = sup{j : τj ≤ T} has tails that decay faster than j−2.
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Algorithms

We can get analogues of familiar simulation-based algorithms for
this random times setting:
▶ Primal: Longstaff and Schwartz (2001) (Least-Squares

Monte-Carlo)
▶ Primal: Andersen (2000) (“Optimal thresholds”)
▶ Dual: Andersen and Broadie (2004) (requires our duality

result and a primal method)
We also show that policy iteration (Kolodko and Schoenmakers,
2006), a recursive method to obtain increasingly better
approximate policies:
▶ extends to the infinite horizon case,
▶ applies to the random times situation
▶ and has the necessary convergence properties.
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Flexibility of the framework

The above algorithms are examples; other simulation based
algorithms could be used, such as:
▶ local regression approaches
▶ COS method
▶ etc.

Model assumptions are minimal, many familiar dynamics can be
used, e.g.:
▶ Underlying: GBM, Ornstein-Uhlenbeck, Heston-SVJ
▶ Arrivals: doubly stochastic Poisson, (Markovian) Hawkes,

generalized intensity
▶ Interaction: arrivals with threshold, state-dependent

probability of success, embedded in a multivariate Hawkes
process
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Example: Max-call on Poisson random times, set-up

▶ Benchmark in the literature: Example 1 of Andersen and
Broadie (2004):
▶ Payoff on two GBMs (max{X 1

t , X 2
t } − K )+, K = 100.

▶ Usually: Bermudan stopping problem, 9 equidistant stopping
opportunities on [0, T ] with T = 3.

▶ Random-times counterpart: Poisson arriving stopping
opportunities with rate λ

▶ Extends to feedback
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Example: square payoff on Poisson random times, methods

▶ Primal algorithm: Least-Squares Monte-Carlo
▶ Make approximate optimal decisions through estimated

continuation values
▶ Estimate through backward recursion

▶ Dual algorithm: Andersen-Broadie dual algorithm, uses our
duality result

▶ Let X (1)
t = max{X 1

t , X 2
t } and X (2)

t = min{X 1
t , X 2

t }.
▶ We then use the regression variables ϕi(t)(X (m)

t )j and
(X (1)

t )j(X (2)
t )k , where i ∈ {0, 1, 2, 3, 4, 5}, j , k ∈ {0, 1, 2, 3}

and m ∈ {1, 2} and ϕi is the i ’th Laguerre polynomial

Dekker, Laeven, Schoenmakers, Vellekoop University of Amsterdam
Optimal Stopping with Randomly Arriving Opportunities to Stop 15 / 22



Motivation Set-up Main results Numerical performance Conclusion References

Example: Max-call on Poisson random times, results

X0 λ Primal (s.e.) Dual (s.e.)
90 1 5.6876 0.0076 5.6950 0.0081
90 2 6.8617 0.0080 6.8754 0.0084
90 5 7.6772 0.0083 7.7168 0.0094
100 1 10.5710 0.0101 10.5769 0.0102
100 2 12.3455 0.0104 12.3607 0.0108
100 5 13.4558 0.0105 13.5195 0.0184
110 1 17.1219 0.0123 17.1269 0.0123
110 2 19.5328 0.0123 19.5600 0.0151
110 5 20.8970 0.0123 20.9724 0.0208

Table 1: N = 2, µ = r = 5%, δ = 10%, σ = 20% T = 3. Andersen and Broadie (2004) method: 200,000 paths
for the regression step in LSMC, 2,000,000 paths to determine the primal price, 1,500 paths to determine the dual
price, 10,000 to estimate the dual-martingale along each path. Maximum truncation error is 0.001.

▶ Duality gaps typically between 0.05% and 0.5%.
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Example: Max-call on Poisson random times, relation to Andersen and
Broadie (2004)

▶ In the random times case for X0 = 100
▶ λ = 1 (E[NT ] = 3): upper-estimate is 10.577
▶ λ = 2 (E[NT ] = 6): upper-estimate is 12.361
▶ λ = 5 (E[NT ] = 15): upper-estimate is 13.520

▶ In the deterministic case with 9 equidistant opportunities, the
lower-estimate is 13.907, which is substantially larger.

▶ This is a consistent finding
▶ Stochasticity of opportunities may have a sizeable effect on the

value of the optimal stopping problem.
▶ The effect may have either sign, as we show in our

forthcoming updated preprint.
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Example: Max-call with feedback

▶ Extend the previous example with feedback from price to
arrivals

▶ Idea: rate λ(t, Xt ; α), where α determines the degree of
feedback
▶ α < 0: negative feedback, high Xt leads to fewer arrivals
▶ α > 0: positive feedback, high Xt leads to more arrivals

▶ “Fair comparison”: we want E[λ(t, Xt ; α)] = λ, a constant.
▶ Use λ(t, x ; α) = (1 − α)λ + 2αFXt (x)λ for α ∈ [−1, 1];

FXt (x) = P(Xt ≤ x).
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Example: Max-call with feedback, results

X0 α Primal (s.e.) Dual (s.e.) E[τ∗] E[τtriv]
90 -1 0.3667 0.0014 0.3667 0.0014 2.8810 2.8699
90 -0.5 2.2571 0.0051 2.2582 0.0051 2.7919 2.6799
90 0 3.0870 0.0058 3.0917 0.0064 2.7537 2.5558
90 0.5 3.4832 0.0060 3.4857 0.0061 2.7441 2.4661
90 1 3.7199 0.0061 3.7244 0.0062 2.7400 2.4008

110 -1 5.4504 0.0054 5.4505 0.0054 1.9068 1.7512
110 -0.5 9.0379 0.0091 9.0389 0.0091 1.9476 1.5867
110 0 10.6375 0.0098 10.6420 0.0099 1.9879 1.4841
110 0.5 11.4425 0.0101 11.4479 0.0101 2.0201 1.4163
110 1 11.8970 0.0101 11.9028 0.0102 2.0205 1.3687

Table 2: N = 1, µ = r = 5%, δ = 10%, σ = 20% T = 3.

▶ Prices increase with α (here).
▶ Effect on E[τ∗] indeterminate.
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Conclusions and future research

▶ The situation studied extends the case with Bermudan
opportunities.

▶ Allows for general feedback structures, no strong structural
conditions: has potential for many financial/economic
questions.

▶ Numerical methods work and show a sizeable effect of
stochastic opportunities.

▶ Preprint: https://arxiv.org/abs/2311.11098.
▶ Currently: studying the effect of stochastic structure on

optimal stopping decisions (next iteration of preprint):
▶ Effect of stochastic arrivals vs deterministic arrivals.
▶ Effect of clustered arrivals.
▶ Effect of feedback in either direction between arrivals and the

reward process.
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