Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	0000000

PDEs for pricing interest rate derivatives under the new generalized Forward Market Model (FMM) International Conference on Computational Finance ICCF 2024

J. G. López-Salas¹, S. Pérez-Rodríguez², C. Vázquez¹

¹University of A Coruña (Spain) ²University of La Laguna (Spain)

Amsterdam, April 5th, 2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	
Outline				

The Generalized FMM

FMM PDEs

Motivation ●○○○	Definitions 0000000	The Generalized FMM 0000000	FMM PDEs 000	Numerical methods and numerical results
Outline				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivation

2 Definitions

The Generalized FMM

FMM PDEs

5 Numerical methods and numerical results

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
○●○○	0000000	0000000	000	
IBORs sca	ndals			

- For decades, financial institutions have been using InterBank Offered Rates (IBORs) as reference rates or as underlyings of interest rate derivatives.
- At the beginning of the 21st century, several big banks manipulated the interest rate they reported that they could borrow at: IBORs scandals!

- A few years ago, financial authorities worldwide initiated the replacement of IBORs with alternative Risk Free Rates (RFRs).
- RFRs are reported to be robust because they rely on real transactions.

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
○O●O	0000000	0000000	000	
RFRs vs I	BORs			

- RFRs are overnight rates and not term rates like IBORs (i.e. one week, one month, three months, ...)
- RFRs are *backward-looking*, which means that the rate to be paid for the application period is calculated by reference to historical transaction data and set at the end of that time interval.
- IBORs are *forward-looking*, meaning that the rate to be paid for the application period is set at the beginning of that time interval.
- RFRs are risk-free since one-day credit risk can be neglected.
- RFRs not only represent the interbank market; in fact they are rates for the entire market.

Motivation ○OO●	Definitions 0000000	The Generalized FMM 0000000	FMM PDEs 000	Numerical methods and numerical results
LMM vs h	-MIM			

- The LIBOR Market Model (LMM) was used for the valuation of interest rate derivatives based on IBORs.
- The LMM contemplates only forward-looking rates.
- LMM it is no longer valid to price financial products based on the new RFRs, that are backward-looking.
- New mathematical models able to price the new derivatives based on RFRs:
 - Directly simulate daily the underlying RFRs in their corresponding application periods.
 - Models term rates based on RFRs: generalized Forward Market Model (FMM).

Andrei Lyashenko and Fabio Mercurio, LIBOR replacement: a modelling framework for in-arrears term rates, Risk, June, 57-62, 2019.

Motivation 0000	Definitions ••••••	The Generalized FMM 0000000	FMM PDEs 000	Numerical methods and numerical results
Outline				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivation

2 Definitions

The Generalized FMM

Image: A state of the state

Sumerical methods and numerical results

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	000000	0000000	000	
Bank accou	unt			

- A continuous-time financial market is considered.
- It has an instantaneous RFR whose value at time t is denoted by r(t).
- Let B(t) be the value of the bank account at time $t \ge 0$. B is the classic process that satisfies the ordinary differential equation dB(t) = r(t)B(t) dt with B(0) = 1, so that $B(t) = e^{\int_{0}^{t} r(u)du}$.
- Risk-neutral measure Q, whose associated numeraire is the bank account B.
- \mathbb{E} will denote the expectation with respect to the risk-neutral measure.
- \mathcal{F}_t will be the σ -algebra generated by risk factors up to the evaluation time.

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	
Zero-coupo	on bond			

 A zero-coupon bond with maturity T is a very simple contract that pays its holder one unit of currency at time T, with no intermediate payments. For t < T, let P(t, T) be the value at time t of this product. We have the following valuation formula, which is given by risk-neutral pricing:

$$P(t,T) = \mathbb{E}\left[e^{-\int_{t}^{T} r(u) \mathrm{d}u} \middle| \mathcal{F}_{t}\right].$$
(1)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Note that P(T, T) = 1 for all T.

• Extended zero-coupon bond. For t > T, Equation (1) reduces to

$$P(t,T) = \mathbb{E}\left[e^{\int_T^t r(u)\mathrm{d}u} \Big| \mathcal{F}_t\right] = e^{\int_T^t r(u)\mathrm{d}u} = \frac{B(t)}{B(T)}.$$
(2)

Note that P(t, 0) = B(t).

The extended *T*-forward measure, denoted by Q^T, is the martingale measure associated with the extended bond price P(t, T). Note that the risk-neutral measure is a particular case of the extended *T*-forward measure where T = 0, i.e Q = Q⁰.

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	○OO●OOO	0000000	000	0000000

The compounded setting-in-arrears term rate

- Financial derivatives written on RFRs consider as underlyings daily compounded setting-in-arrears term rates, which by definition are backward-looking in nature.
- Tenor structure $0 = T_0 < T_1 < \ldots < T_N$. Let τ_k be the year fraction of the *k*-th time interval $[T_{k-1}, T_k)$
- The simple backward-looking spot rate is defined as

$$R(T_{k-1}, T_k) = \frac{1}{\tau_k} \left[e^{\int_{T_{k-1}}^{T_k} r(u) du} - 1 \right] = \frac{1}{\tau_k} \left[\frac{B(T_k)}{B(T_{k-1})} - 1 \right] = \frac{1}{\tau_k} \left[P(T_k, T_{k-1}) - 1 \right].$$

 $R(T_{k-1}, T_k)$ is the simple interest rate such that the investment of one unit of currency at time T_{k-1} yields $P(T_k, T_{k-1})$ units of currency at time T_k .

• The simple forward-looking spot rate is defined as

$$F(T_{k-1}, T_k) = \frac{1}{\tau_k} \left[\frac{1}{P(T_{k-1}, T_k)} - 1 \right].$$

 $F(T_{k-1}, T_k)$ is the simple interest rate such that the investment of $P(T_{k-1}, T_k)$ units of currency at time T_{k-1} yields one unit of currency at time T_k .

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	

Forward rates: Backward-looking forward rate

• The simple compounded backward-looking forward rate prevailing at time t for the time interval $[T_{k-1}, T_k)$ is denoted by $R_k(t)$ and defined by

$$R_{k}(t) = \frac{1}{\tau_{k}} \left(\frac{P(t, T_{k-1})}{P(t, T_{k})} - 1 \right).$$
(3)

• It is the value of the fixed rate K_R in the swaplet paying $\tau_k(R(T_{k-1}, T_k) - K_R)$ at time T_k , such that this product has zero value at time t.

• Definition (3) is valid for all times t, even those times $t > T_k$.

- $R_k(t)$ satisfies the following properties:
 - R_k(T_{k-1}) = F(T_{k-1}, T_k), i.e., at time T_{k-1} it is equal to the forward-looking spot rate.
 - R_k(T_k) = R(T_{k-1}, T_k), i.e., at time T_k it is equal to the backward-looking spot rate.
 - For $t > T_k$, $R_k(t) = R(T_{k-1}, T_k)$, i.e., after time T_k it stops evolving.

Forward rates: Forward-looking forward rate

• The simple compounded forward-looking forward rate prevailing at time t for the time interval $[T_{k-1}, T_k)$ is denoted by $F_k(t)$ and defined by

$$F_{k}(t) = \begin{cases} R_{k}(t) & \text{if } t \leq T_{k-1} \\ F(T_{k-1}, T_{k}) & \text{if } t > T_{k-1}. \end{cases}$$
(4)

• It is the value of the fixed rate K_F in the swaplet paying $\tau_k(R(T_{k-1}, T_k) - K_F)$ at time T_k such that this product has zero value at time t.

So we have defined two types of forwards: the forward of the backward-looking rate and the forward of the forward-looking rate. Nevertheless, for each k = 1,..., N, the backward-looking forward rate R_k and the forward-looking forward rate F_k can be modeled by a single rate, the forward of the backward-looking rate R_k.

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	000000	0000000	000	0000000

Computation of extended discount factors from forward rates values

 $P(T_i, T_j)$:

• If
$$T_i < T_j$$
, $P(T_i, T_j) = \prod_{k=i+1}^j \frac{1}{1 + \tau_k R_k(T_i)}$

- If $T_i = T_j$, $P(T_i, T_j) = 1$
- If $T_i > T_j$, Let us consider the scenario

From equation (3), we have

$$P(T_i, T_j) = (1 + \tau_{j+1}R_{j+1}(T_i))P(T_i, T_{j+1}).$$

Since $T_i > T_{j+1}$, and having in mind that R_{j+1} stops evolving at time T_{j+1} , it is clear that $R_{j+1}(T_i) = R_{j+1}(T_{j+1})$. Next, by repeatedly applying (3) to the terms $P(T_i, T_{j+1})$, $P(T_i, T_{j+2})$, ... and taking into account that $R_{j+2}(T_i) = R_{j+2}(T_{j+2})$, ... and also that $P(T_j, T_j) = 1$, one readily obtains:

$$P(T_i, T_j) = \prod_{k=j+1}^{i} (1 + \tau_k R_k(T_k)).$$
(5)

Motivation 0000	Definitions 0000000	The Generalized FMM ●●●●●●●	FMM PDEs 000	Numerical methods and numerical results
Outline				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivation

2 Definitions

The Generalized FMM

Image: A state of the state

5 Numerical methods and numerical results

Motivation 0000	Definitions 0000000	The Generalized FMM	FMM PDEs 000	Numerical methods and numerical results
FMM dynai	mics			

- Model the evolution of the forward rates under a common probability measure.
- FMM dynamics under the classic spot-LIBOR measure Q^d and the general T_k -forward measure Q^{T_k} are the same as those of the corresponding LMM.
- FMM allows also for forward-rates dynamics under the risk-neutral measure Q.
- The system of SDEs of the FMM takes the form

$$\mathrm{d}R_k(t) = \mu_k(t)\mathrm{d}t + \nu_k(t)\mathrm{d}W_k(t), \quad k = 1, \dots, N.$$
(6)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The drift terms are determined by requiring lack of arbitrage.
- The diffusion terms have to capture the fact that the process $R_k(t)$ will not be killed at $t = T_{k-1}$ like it happened in the classic LMM.

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	○○●○○○○	000	
EMM dy	namics: diffus	terms		

- Need to define dynamics of the forward rates $R_k(t)$ inside their application periods $[T_{k-1}, T_k)$.
- The volatility of $R_k(t)$ inside $[T_{k-1}, T_k)$ goes down progressively to zero: it becomes smaller and smaller until reaching the value zero at T_k .
- To model this behaviour

$$dR_k(t) = \mu_k(t)dt + \nu_k(t)\gamma_k(t)dW_k(t), \quad k = 1, \dots, N.$$
(7)

• $\gamma_k(t)$ is a deterministic function to control the volatility decay.

$$\gamma_k(t) = \begin{cases} 1 & \text{if } t \leq T_{k-1}, \\ \frac{T_k - t}{T_k - T_{k-1}} & \text{if } t \in (T_{k-1}, T_k), \\ 0 & \text{if } t \geq T_k. \end{cases}$$

Classic LMM volatility

۲

$$\nu_k(t) = \begin{cases} \sigma_k(t) & \text{normal model,} \\ \sigma_k(t)R_k(t) & \text{lognormal model,} \\ \sigma_k(t)R_k(t) + \vartheta_k & \text{shifted-lognormal model,} \\ \sigma_k(t)R_k(t)^{\beta_k} & \text{CEV model.} \end{cases}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

• Under the probability measure Q the price of the bonds $P(t, T_k)$ divided by the numeraire $B(t) = P(t, T_0)$ must be martingales. By using this condition, the drifts $\mu_k(t)$ for the forward rates can be computed starting from R_1 until R_N .

• μ_1 : the process $\frac{P(t, T_1)}{P(t, T_0)}$ has to be martingale. By applying (3) and Ito's lemma, we get

$$\begin{split} d\left(\frac{P(t,T_{1})}{P(t,T_{0})}\right) &= d\left(\frac{1}{1+\tau_{1}R_{1}(t)}\right) = \\ & \left(-\frac{\tau_{1}\mu_{1}(t)}{\left(1+\tau_{1}R_{1}(t)\right)^{2}} + \frac{\tau_{1}^{2}\nu_{1}^{2}(t)\gamma_{1}^{2}(t)}{\left(1+\tau_{1}R_{1}(t)\right)^{3}}\right) dt - \frac{\tau_{1}\nu_{1}(t)\gamma_{1}(t)}{\left(1+\tau_{1}R_{1}(t)\right)^{2}} dW_{1}(t). \end{split}$$

By imposing that the drift term has to be zero to ensure the martingale property, it readily follows that

$$\mu_1(t) = \frac{\tau_1 \nu_1^2(t) \gamma_1^2(t)}{1 + \tau_1 R_1(t)}.$$
(8)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

•
$$\mu_2$$
: the process $\frac{P(t, T_2)}{P(t, T_0)}$ has to be martingale. Computing

$$d\left(\frac{P(t, T_2)}{P(t, T_0)}\right) = d\left(\frac{P(t, T_2)}{P(t, T_1)}\frac{P(t, T_1)}{P(t, T_0)}\right) = d\left(\frac{1}{1 + \tau_2 R_2(t)}\frac{1}{1 + \tau_1 R_1(t)}\right) = \left(-\frac{\tau_1 \mu_1(t)}{(1 + \tau_1 R_1(t))^2(1 + \tau_2 R_2(t))} - \frac{\tau_2 \mu_2(t)}{(1 + \tau_1 R_1(t))(1 + \tau_2 R_2(t))^2} + \frac{\tau_1^2 \mu_1^2(t) \gamma_1^2(t)}{(1 + \tau_1 R_1(t))^3(1 + \tau_2 R_2(t))} + \frac{\tau_2^2 \mu_2^2(t) \gamma_2^2(t)}{(1 + \tau_1 R_1(t))(1 + \tau_2 R_2(t))^3} + \frac{\tau_1 \tau_2 \rho_1 2 \nu_1(t) \gamma_1(t) \nu_2(t) \gamma_2(t)}{(1 + \tau_1 R_1(t))^2(1 + \tau_2 R_2(t))^2}\right) dt$$

$$-\frac{\tau_1 \nu_1(t) \gamma_1(t)}{(1 + \tau_1 R_1(t))^2(1 + \tau_2 R_2(t))} dW_1(t) - \frac{\tau_2 \nu_2(t) \gamma_2(t)}{(1 + \tau_1 R_1(t))(1 + \tau_2 R_2(t))^2} dW_1(t).$$

Next, using (8) for μ_1 and imposing that the drift term has to be zero, we obtain

$$\mu_{2}(t) = \nu_{2}(t)\gamma_{2}(t)\left(\rho_{12}\frac{\tau_{1}\nu_{1}(t)\gamma_{1}(t)}{1+\tau_{1}R_{1}(t)} + \frac{\tau_{2}\nu_{2}(t)\gamma_{2}(t)}{1+\tau_{2}R_{2}(t)}\right).$$
(9)

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	○0000●0	000	
FMM dynar	mics: drift te	erms		

• μ_k : the following process has to be martingale

$$rac{P(t,\,T_k)}{P(t,\,T_0)} = \prod_{i=1}^k rac{P(t,\,T_i)}{P(t,\,T_{i-1})} = \prod_{i=1}^k rac{1}{1+ au_i R_i(t)}$$

Using Ito's lemma, after some manipulations, one readily obtains

$$\begin{split} \mathbf{d} \left(\frac{P(t, T_k)}{P(t, T_0)} \right) &= \prod_{j=1}^k \frac{1}{1 + \tau_j R_j(t)} \times \left[-\sum_{i=1}^k \nu_i(t) \gamma_i(t) \frac{\tau_i}{1 + \tau_i R_i(t)} \mathbf{d} W_i(t) \right. \\ &\left(\sum_{i=1}^k \frac{\tau_i}{1 + \tau_i R_i(t)} \left(-\mu_i(t) + \frac{\tau_i \nu_i^2(t) \gamma_i^2(t)}{1 + \tau_i R_i(t)} \right) + \sum_{i,j=1,i < j}^k \rho_{ij} \nu_i(t) \gamma_i(t) \nu_j(t) \gamma_j(t) \frac{\tau_i}{1 + \tau_i R_i(t)} \frac{\tau_j}{1 + \tau_j R_j(t)} \right] \mathbf{d} t \right]. \end{split}$$

Taking into account the previously computed values of μ_1, \ldots, μ_{k-1} and imposing that the drift term has to be zero, one obtains

$$\mu_{k}(t) = \nu_{k}(t)\gamma_{k}(t)\sum_{i=1}^{k}\rho_{ik}\frac{\tau_{i}\nu_{i}(t)\gamma_{i}(t)}{1+\tau_{i}R_{i}(t)}.$$
(10)

• Since $\gamma_k(t) = 0$ for $t \ge T_k$, μ_k can be better expressed in terms of the index function

$$\eta(t) = \min\{j, 1 \le j \le k : T_j \ge t\}$$

which provides the index of the element in the tenor structure being not smaller than t that is the nearest to time t. Therefore, we have

$$\mu_k(t) = \nu_k(t)\gamma_k(t)\sum_{i=\eta(t)}^k \rho_{ik}\frac{\tau_i\nu_i(t)\gamma_i(t)}{1+\tau_iR_i(t)}.$$
(11)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• All in all, the dynamics of R_k under the measure Q satisfy the following system of SDEs:

$$\mathrm{d}R_k(t) = \nu_k(t)\gamma_k(t)\sum_{i=\eta(t)}^k \rho_{ik}\frac{\tau_i\nu_i(t)\gamma_i(t)}{1+\tau_iR_i(t)}\mathrm{d}t + \nu_k(t)\gamma_k(t)\mathrm{d}W_k(t), \ k = 1,\ldots,N.$$
(12)

Motivation 0000	Definitions 0000000	The Generalized FMM 0000000	FMM PDEs ●○○	Numerical methods and numerical results
Outline				

Motivation

2 Definitions

The Generalized FMM

FMM PDEs

Sumerical methods and numerical results

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivation 0000	Definitions 0000000	The Generalized FMM 0000000	FMM PDEs ○●○	Numerical methods and numerical results
FMM PDE				

Let $\nu_k(t) = \nu_k(t, R_k(t))$ be a general instantaneous volatility for the forward rate $R_k(t)$. Under the risk-neutral measure Q, the price of an interest rate derivative with maturity $T = T_k > T_0 = 0$ (for some k = 1, ..., N), that depends on the fixing of the rates $R_1, ..., R_N$, with payoff function $\varphi : [R^{min}, \infty)^N \to \mathbb{R}$, is given by

$$V(t, R_1, ..., R_N) = P(t, T_0) \Pi(t, R_1, ..., R_N), \quad t \in [T_0, T]$$

where the relative price $\Pi : [T_0, T] \times [R^{min}, \infty)^N \to \mathbb{R}$ satisfies the PDE

$$\frac{\partial \Pi}{\partial t} + \sum_{k=1}^{N} \mu_k(t) \frac{\partial \Pi}{\partial R_k} + \frac{1}{2} \sum_{k,l=\eta(t)}^{N} \rho_{kl} \nu_k(t) \gamma_k(t) \nu_l(t) \gamma_l(t) \frac{\partial^2 \Pi}{\partial R_k \partial R_l} = 0, \quad t \in [T_0, T),$$
(13)

along with the terminal condition

$$\Pi(T, R_1, \ldots, R_N) = \frac{\varphi(R_1, \ldots, R_N)}{P(T, T_0)}, \quad R_1, \ldots, R_N \ge R^{\min}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Motivation 0000	0000000	The Generalized FMM 0000000	FMM PDEs ○O●	Numerical methods and numerical results

PDE (13) diffuses a relative price, i.e., a price in terms of a bond. After having numerically solved the PDE and thereby having obtained the time *t* relative value function, the latter has to be multiplied by the time *t* bond price $P(t, T_0)$ to obtain the absolute value price (the price of the derivative itself). Note that if $t = T_0$, since $P(T_0, T_0) = 1$, then $V(T_0, R_1, \ldots, R_N) = \Pi(T_0, R_1, \ldots, R_N)$.

Motivation 0000	Definitions 0000000	The Generalized FMM 0000000	FMM PDEs 000	Numerical methods and numerical results
Outline				

1 Motivation

2 Definitions

The Generalized FMM

FMM PDEs

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivation 0000	0000000	The Generalized FMM 0000000	FMM PDEs 000	Numerical methods and numerical results
Numoric	al mathada; (Conoral idea		

RFR swaptions

- Finite differences in space
- AMFR-W1 method in time: very efficient when dealing with parabolic problems involving mixed derivatives, as they avoid computing explicitly the part of the Jacobian that includes the discretization of such mixed derivatives.
- As the payoff function of the derivative that determines the dynamics of the PDE has differentiability issues near the strike values, we have explored the integration on non-uniform meshes, which contain many more points near the payoff non-differentiability area than in the rest of the domain.
- The consideration of appropriate non-uniform meshes improves the accuracy and reliability of the approximation.
- A cell averaging technique is applied to smooth the payoff at the grid points near the non-differentiability region.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Initial value problem with a directional splitting

$$Y' = \mathcal{F}(t, Y) = \sum_{k=0}^{N} \mathcal{F}_{k}(t, Y), \quad Y(0) = Y_{0},$$

$$\mathcal{F}_{k}(t, Y) = \mathcal{A}_{k}(t)Y, \quad k = 0, 1, \dots, N,$$

$$\mathcal{A}_{1}(t) = \lambda_{1}^{2}(t)\tilde{\mathcal{A}}_{1}, \quad \mathcal{A}_{k}(t) = \lambda_{k}^{2}(t)\tilde{\mathcal{A}}_{k}^{(1)} + \lambda_{k}(t)\mathcal{D}_{k}(t)\tilde{\mathcal{A}}_{k}^{(2)}, \quad k = 2, \dots, N,$$
(14)

where each $\mathcal{F}_k(t, \mathbf{Y})$ stores the components of the discretization of the advection and diffusion terms in the x_k -direction, for k = 1, ..., N, and $\mathcal{F}_0(t, \mathbf{Y})$ stores those of the discretization of the mixed derivatives. In this case, $\tilde{\mathcal{A}}_1$, $\{\tilde{\mathcal{A}}_k^{(1)}, \tilde{\mathcal{A}}_k^{(2)}\}_{k=2}^N$ are block tridiagonal constant matrices and $\mathcal{D}_k(t)$ is diagonal.

Due to the increasing stiffness of (14) as the resolution of the spatial grid increases, explicit methods are not suitable for its time integration. On the other hand, fully implicit methods requiring the computation of the exact Jacobian of the derivative function are also unsuitable because of the complicated structure of the matrix $\mathcal{A}_0(t)$.

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	○○○●○○○
AMFR-W	1 method			

For the time integration of (14) a method from the class of AMFR-W-methods is applied. In particular, we have selected the one-stage AMFR-W1 method. More precisely, given an approximation Y_n to the solution of (14) at the time $t = t_n$, this method approximates the solution at $t = t_{n+1} = t_n + \Delta t$ (with Δt being the constant step of the time discretization) by

$$\begin{aligned}
& \mathcal{K}^{(0)} = \quad \Delta t \, \mathcal{F}(t_n, Y_n), \\
& (I - \nu \Delta t \, \mathcal{A}_k(t_n)) \mathcal{K}^{(k)} = \quad \mathcal{K}^{(k-1)} + \nu (\Delta t)^2 \alpha_{k,n}, \quad k = 1, \dots, N, \\
& \tilde{\mathcal{K}}^{(0)} = \quad 2\mathcal{K}^{(0)} + \theta (\Delta t)^2 G_n - (I - \theta \Delta t \, \mathcal{A}(t_n)) \mathcal{K}^{(N)}, \\
& (I - \nu \Delta t \, \mathcal{A}_k(t_n)) \tilde{\mathcal{K}}^{(k)} = \quad \tilde{\mathcal{K}}^{(k-1)} + \nu (\Delta t)^2 \alpha_{k,n}, \quad k = 1, \dots, N, \\
& \quad Y_{n+1} = \quad Y_n + \tilde{\mathcal{K}}^{(N)},
\end{aligned} \tag{15}$$

where

$$\begin{aligned} \mathcal{A}(t_n) &= \frac{\partial \mathcal{F}}{\partial Y}(t_n, Y_n) = \sum_{k=0}^{N} \mathcal{A}_k(t_n), \\ \alpha_{k,n} &= \frac{\partial \mathcal{F}_k}{\partial t}(t_n, Y_n), \ k = 1, \dots, N, \quad G_n = \frac{\partial \mathcal{F}}{\partial t}(t_n, Y_n), \end{aligned}$$

with parameters $\theta = 1/2$ and $\nu = \theta$ for N = 2, 3 and $\nu = \kappa_N N \theta$ for $N \ge 4$, where the values of κ_N are given in GlezHairerHdezPerez18 and guarantee that the AMFR-W1 method is unconditionally stable on multi-dimensional linear constant coefficient PDEs with mixed derivatives.

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	
Numerica	al results: log	normal model		

	Swaption $T_1 imes (T_2 - T_1)$					
K	Monte Carlo Confidence Interval	PDE	Impl vol			
1.2 K _{ATM}	$[6.569174 imes 10^{-7}, 6.705475 imes 10^{-7}]$	$6.610817 imes 10^{-7}$	0.150103			
1.1 K _{ATM}	$[1.229203 imes 10^{-5}, 1.235655 imes 10^{-5}]$	$1.230812 imes 10^{-5}$	0.150014			
K _{ATM}	$[9.663654 imes 10^{-5}, 9.681989 imes 10^{-5}]$	$9.666517 imes 10^{-5}$	0.150003			
0.9 K _{ATM}	$[3.313149 imes 10^{-4}, 3.315975 imes 10^{-4}]$	$3.314849 imes 10^{-4}$	0.150035			
0.8 K _{ATM}	$[6.460959 imes 10^{-4}, 6.463961 imes 10^{-4}]$	$6.463699 imes 10^{-4}$	0.150143			
Time	73.32 <i>s</i>	603.82 s, $M_1 = \Lambda$	$M_2 = 1024$			
	Swaption $T_1 imes (T_3 - T_3)$	<i>T</i> ₁)				
K	Monte Carlo Confidence Interval	PDE	Impl vol			
1.2 K _{ATM}	$[5.007571 imes 10^{-6}, 5.070211 imes 10^{-6}]$	$5.020028 imes 10^{-6}$	0.178879			
1.1 K _{ATM}	$[4.532638 imes 10^{-5}, 4.552660 imes 10^{-5}]$	$4.538339 imes 10^{-5}$	0.177969			
K _{ATM}	$[2.361209 imes 10^{-4}, 2.365753 imes 10^{-4}]$	$2.364758 imes 10^{-4}$	0.177020			
0.9 K _{ATM}	$[7.014066 \times 10^{-4}, 7.020817 \times 10^{-4}]$	$7.014788 imes 10^{-4}$	0.176040			
0.8 K _{ATM}	$[1.340121 imes 10^{-3}, 1.340854 imes 10^{-3}]$	$1.340742 imes 10^{-3}$	0.175032			
Time	112.94 <i>s</i>	4316.30 s, L	= 256			

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	○○○○○○●○
M	une lle leur			

IN.	umorical	roculter	lognormal	modal
1 \	umencai	results	пояпонна	moder

Swaption $T_1 \times (T_4 - T_1)$				
K	Monte Carlo Confidence Interval	PDE	Impl vol	
1.2 K _{ATM}	$[9.480228 imes 10^{-6}, 9.589930 imes 10^{-6}]$	$9.523646 imes 10^{-6}$	0.184582	
1.1 K _{ATM}	$[7.775208 imes 10^{-5}, 7.808471 imes 10^{-5}]$	$7.788910 imes 10^{-5}$	0.183922	
K _{ATM}	$[3.794420 imes 10^{-4}, 3.801720 imes 10^{-4}]$	$3.800981 imes 10^{-4}$	0.183272	
0.9 K _{ATM}	$[1.094727 imes 10^{-3}, 1.095804 imes 10^{-3}]$	$1.095566 imes 10^{-3}$	0.182621	
0.8 K _{ATM}	$[2.081112 \times 10^{-3}, 2.082289 \times 10^{-3}]$	$2.082134 imes 10^{-3}$	0.181977	
Time	150.69 <i>s</i>	23410.36 s, L = 128		
Swaption $T_1 \times (T_5 - T_1)$				
K	Monte Carlo Confidence Interval	PDE	Impl vol	
1.2 K _{ATM}	$[1.485427 imes 10^{-5}, 1.501782 imes 10^{-5}]$	$1500055 imes 10^{-5}$	0.188628	
1.1 K _{ATM}	$[1.139641 imes 10^{-4}, 1.144421 imes 10^{-4}]$	$1.143997 imes 10^{-4}$	0.187909	
K _{ATM}	$[5.350862 imes 10^{-4}, 5.361152 imes 10^{-4}]$	$5.357548 imes 10^{-4}$	0.187452	
0.9 K _{ATM}	$[1.515406 imes 10^{-3}, 1.516917 imes 10^{-3}]$	$1.516010 imes 10^{-3}$	0.187002	
0.8 K		$2,970076 \times 10^{-3}$	0 106016	
0.0 NATM	$[2.869551 \times 10^{-3}, 2.871208 \times 10^{-3}]$	2.870070 × 10 °	0.100010	

Motivation	Definitions	The Generalized FMM	FMM PDEs	Numerical methods and numerical results
0000	0000000	0000000	000	○○○○○○●
Thank you	ı!			

Thank you for your attention!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @