Hierarchical and Adaptive Methods for Accurate and Efficient Risk Estimation

Joint work with: Mike Giles and Abdul-Lateef Haji-Ali

University of Edinburgh, Heriot-Watt University

April 5, 2024 ICCF24

Motivation: CVA Capital Charge

- ► Valuation adjustments can be expressed through a series of non-linear functions of nested conditional expectations.
- Approximation by nested Monte Carlo is expensive, especially when the underlying market variables can only be approximately sampled.
- ▶ In such settings, accurate computation of associated risk measures using nested Monte Carlo simulation is computationally infeasible.

Motivation: CVA Capital Charge (Nested Simulation)

- ▶ Given market at time 0 simulate \mathcal{G}_H -measurable market and credit risk factors under the physical measure P at short risk horizon $0 < H \ll 1$.
 - ▶ Given risk factors at time H, simulate instances of default τ under the risk-neutral measure Q occurring before contract maturity T > 0.
 - Given the (risk-neutral) market state at default time $\tau < T$, simulate random future payoffs $\pi(S_T)$ based on the asset values S_T under the risk-neutral measure.

Value-at-Risk formula:

$$\begin{split} \varphi &= \mathsf{P}\bigg[\frac{\mathsf{CVA}_H}{\mathcal{B}_H} - \mathsf{CVA}_0 > \lambda_\varphi\bigg], \\ \mathsf{CVA}_t &= \mathcal{B}_t \, \mathsf{E}^\mathsf{Q}\Big[\,\chi_{t \leq \tau \leq \mathcal{T}} \, \mathsf{LGD} \, \mathsf{max}\Big\{\mathsf{E}^\mathsf{Q}\big[\,\mathcal{B}_\mathcal{T}^{-1}\pi(\mathcal{S}_\mathcal{T}) \, \big|\, \mathcal{G}_\tau\,\big], 0\Big\} \, \Big|\, \mathcal{G}_t\,\Big]. \end{split}$$

Overview

Let X, Y, Z be random variables and $f : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ sending $(u, y) \mapsto f(u, y)$ be Lipschitz in u and y. Consider the system

$$\varphi = P[U_0(Z) > \lambda_{\varphi}]$$

$$U_0(Z) = E[f(U_1(Y), Y) | Z]$$

$$U_1(Y) = E[X | Y].$$

Key features:

- Recursive approximation of nested expectations $U_0(Z)$ and $U_1(Y)$, paired with approximation of the variables X, Y and Z.
- Approximation of discontinuous observables:

$$\varphi = \mathsf{P}[U_0(Z) > \lambda_{\varphi}] = \mathsf{E}[\chi_{U_0(Z) > \lambda_{\varphi}}].$$

Nested Monte Carlo simulation has $\mathcal{O}(\varepsilon^{-5})$ cost for a root mean square error accuracy ε .

Multilevel Monte Carlo

Want to approximate

given approximate samples $Q \approx Q_\ell$ for $\ell \in \mathbb{N}$, with

$$\mathsf{Cost}(Q_\ell) \propto 2^{\gamma\ell}$$
 $|\mathsf{E}[\,Q - Q_\ell\,]| \propto 2^{-lpha\ell}$ $\mathsf{Var}[\,Q - Q_\ell\,] \propto 2^{-eta\ell}.$

Then, let

$$\mathsf{E}[\,\Delta_\ell Q\,] = egin{cases} \mathsf{E}[\,Q_\ell - Q_{\ell-1}\,] & \ell > 0 \ \mathsf{E}[\,Q_0\,] & \ell = 0, \end{cases}$$
 $\mathsf{E}[\,Q\,] pprox \mathsf{E}[\,Q_L\,] = \sum_{\ell=0}^L \mathsf{E}[\,\Delta_\ell Q\,].$

Multilevel Monte Carlo

Want to approximate

given approximate samples $Q \approx Q_\ell$ for $\ell \in \mathbb{N}$, with

$$\mathsf{Cost}(Q_\ell) \propto 2^{\gamma\ell}$$
 $|\mathsf{E}[\,Q - Q_\ell\,]| \propto 2^{-lpha\ell}$ $\mathsf{Var}[\,Q - Q_\ell\,] \propto 2^{-eta\ell}.$

The cost of attaining root mean square error ε using multilevel Monte Carlo is of order

$$\varepsilon^{-2} \begin{cases} 1 & \beta > \gamma \\ |\log \varepsilon|^2 & \beta = \gamma \\ \varepsilon^{-(\gamma - \beta)/\alpha} & \beta < \gamma. \end{cases}$$

Unbiased Multilevel Monte Carlo [Rhee, Glynn, 2015]

$$\mathsf{E}[\,Q\,] = \sum_{\ell=0}^{\infty} \mathsf{E}[\,\Delta_{\ell}Q\,] = \mathsf{E}\Big[\,(\Delta_{\kappa}Q)\,2^{\zeta\kappa}/C_{\zeta}\,\Big]$$

where κ is a random, non-negative integer with probability mass

$$P[\kappa = \ell] = C_{\zeta} 2^{-\zeta \ell}.$$

Provided,

$$\mathsf{Cost}(Q_\ell) \propto 2^{\gamma\ell}$$
 $\mathsf{E}[\,|Q-Q_\ell|^q\,] \propto 2^{-qeta\ell/2},$

 $(\Delta_{\kappa}Q) 2^{\zeta\kappa}/C_{\zeta}$ has bounded expected sampling cost and q^{th} moment when

$$\gamma < \zeta < \frac{q}{q-1} \frac{\beta}{2} \implies q < \frac{1}{1-\beta/2\zeta}.$$

Overview

Let X, Y, Z be random variables and $f : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ sending $(u, y) \mapsto f(u, y)$ be Lipschitz in u and y. Consider the system

$$\varphi = P[U_0(Z) > \lambda_{\varphi}]$$

$$U_0(Z) = E[f(U_1(Y), Y) | Z]$$

$$U_1(Y) = E[X | Y].$$

Key features:

- Recursive approximation of nested expectations $U_0(Z)$ and $U_1(Y)$, paired with approximation of the variables X, Y and Z.
- ► Approximation of discontinuous observables:

$$\varphi = P[U_0(Z) > \lambda_{\varphi}] = E[\chi_{U_0(Z) > \lambda_{\varphi}}].$$

Nested Simulation

Consider now the nested pair of expectations

$$U_0 := \mathsf{E}[f(U_1(Y), Y)]$$

$$U_1(Y) := \mathsf{E}[X \mid Y]$$

Problem: Exact samples of X and Y are not available. Instead, given Y = y we approximate $X \approx X_k(y)$. Similarly, $Y \approx Y_\ell$.

Solution: Combine nested 'inner' unbiased multilevel Monte Carlo estimate of $U_1(y)$, given Y=y, within an 'outer' unbiased multilevel Monte Carlo estimate of U_0 .

Antithetic Multilevel Difference

Consider the nested pair of expectations

$$U_0 := \mathsf{E}[f(U_1(Y), Y)]$$

$$U_1(Y) := \mathsf{E}[X \mid Y] = \mathsf{E}\Big[\Delta_{\kappa_1} X(Y) 2^{\zeta_1 \kappa_1} / C_{\zeta_1} \mid Y\Big]$$

$$\mathsf{P}[\kappa_1 = k] = C_{\zeta_1} 2^{-\zeta_1 k}$$

Antithetic Multilevel Difference

Consider the nested pair of expectations

$$egin{aligned} U_0 &:= \mathsf{E}[\,f(U_1(Y),\,Y)\,] \ U_1(Y) &:= \mathsf{E}[\,X\,|\,Y\,] = \mathsf{E}\Big[\,\Delta_{\kappa_1} X(Y) 2^{\zeta_1 \kappa_1}/\mathcal{C}_{\zeta_1}\,\Big|\,Y\,\Big] \ \mathsf{P}[\,\kappa_1 = k\,] &= \mathcal{C}_{\zeta_1} 2^{-\zeta_1 k} \ \widehat{U}_{1,\ell}(Y) &:= rac{1}{N_\ell} \sum_{r=1}^{N_\ell} (\Delta_{\kappa_1} X(Y) 2^{\zeta_1 \kappa_1}/\mathcal{C}_{\zeta_1})^{(n)}, \quad N_\ell \propto 2^\ell \end{aligned}$$

Antithetic Multilevel Difference

Consider the nested pair of expectations

$$\begin{aligned} U_0 &\coloneqq \mathsf{E}[\,f(U_1(Y),\,Y)\,] \\ U_1(Y) &\coloneqq \mathsf{E}[\,X \mid Y\,] = \mathsf{E}\Big[\,\Delta_{\kappa_1} X(Y) 2^{\zeta_1 \kappa_1} / C_{\zeta_1} \,\Big|\,Y\,\Big] \\ \mathsf{P}[\,\kappa_1 = k\,] &= C_{\zeta_1} 2^{-\zeta_1 k} \\ \widehat{U}_{1,\ell}(Y) &\coloneqq \frac{1}{N_\ell} \sum_{\ell=1}^{N_\ell} (\Delta_{\kappa_1} X(Y) 2^{\zeta_1 \kappa_1} / C_{\zeta_1})^{(n)}, \quad N_\ell \propto 2^\ell \end{aligned}$$

Antithetic multilevel difference [Bourgey, De Marco, Gobet, 2020],

[Bujok, Hambly, Reisinger, 2015], [Giles, Haji-Ali, 2019]:

$$\Delta_\ell f \coloneqq f\Big(\widehat{U}_{1,\ell}(Y_\ell),Y_\ell\Big) - \frac{1}{2}\sum^1 f\Big(\widehat{U}_{1,\ell-1}^{(i)}(Y_{\ell-1}),Y_{\ell-1}\Big),$$

where

$$\widehat{U}_{1,\ell}(y) - \frac{1}{2} \sum_{i=0}^{1} \widehat{U}_{1,\ell-1}^{(i)}(y) = 0.$$

Convergence

Theorem ([Giles, Haji-Ali, S., 2024])

Assume f is continuous and piecewise-twice differentiable, with bounded first and second derivative, and that there is $\beta>1$ and q>2 such that

$$Cost(X_k(y)) + Cost(Y_{\ell}) \propto 2^k + 2^{\ell}$$
$$E[|X_k(Y_{\ell}) - X_{k-1}(Y_{\ell})|^q] + E[||Y_{\ell} - Y_{\ell-1}||^q] \propto 2^{-q\beta k/2} + 2^{-q\beta \ell/2}$$

Then, there exists $\zeta_0, \zeta_1 > 1$ such that for $P[\kappa_0 = \ell] = C_{\zeta_0} 2^{-\zeta_0 \ell}$, the random variable

$$(\Delta_{\kappa_0} f) 2^{\zeta_0 \kappa_0} / C_{\zeta_0}$$

has bounded expected sampling cost and variance and

$$U_0 = \mathsf{E}\Big[\left(\Delta_{\kappa_0} f\right) 2^{\zeta_0 \kappa_0} / C_{\zeta_0}\Big].$$

Overview

Let X, Y, Z be random variables and $f : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ sending $(u, y) \mapsto f(u, y)$ be Lipschitz in u and y. Consider the system

$$arphi = \mathsf{P}[\ U_0(Z) > \lambda_{arphi}\] \ U_0(z) = \mathsf{E}[\ \Delta(z)\ |\ Z = z\] \ \widehat{U}_{0,\ell}(z) = rac{1}{N_\ell} \sum_{n=1}^{N_\ell} \Delta^{(n)}(z)$$

Key features:

- ▶ Recursive approximation of nested expectations $U_0(Z)$ and $U_1(Y)$, paired with approximation of the variables X, Y and Z.
- Approximation of discontinuous observables:

$$\varphi = \mathsf{P}[U_0(Z) > \lambda_{\varphi}] = \mathsf{E}[\chi_{U_0(Z) > \lambda_{\varphi}}].$$

Multilevel Monte Carlo for Probabilities

$$P[U_0(Z) > \lambda_{\varphi}] \approx E[\chi_{\widehat{U}_{0,0}(Z) > \lambda_{\varphi}}] + \sum_{\ell=1}^{L} E[\chi_{\widehat{U}_{0,\ell}(Z) > \lambda_{\varphi}} - \chi_{\widehat{U}_{0,\ell-1}(Z) > \lambda_{\varphi}}]$$

Theorem

For root mean square error ε and (random), positive-valued, normalising factor σ_ℓ

Previous Research

Explicit smoothing $\chi_{x>0} \approx g(x)$: [Giles, Nagapetyan, Ritter, 2015].

Numerical smoothing:

[Bayer, Ben Hammouda, Tempone, 2023], [Giles, Debrabant, Rößler, 2019].

▶ Path branching:

[Giles, Haji-Ali, 2022].

- Adaptivity:
 - ► For partial differential equations with random coefficients [Elfverson, Hellman, Målqvist, 2016].
 - ► For nested expectations [Haji-Ali, S., Teckentrup, 2022], [Giles, Haji-Ali, 2019].
- Quasi-Monte Carlo:

[Xu, He, Wang, 2020].

Adaptivity

$$\varphi \approx \mathsf{E}[\chi_{\widehat{U}_{0,0}(Z) > \lambda_{\varphi}}] + \sum_{\ell=1}^{L} \mathsf{E}\bigg[\chi_{\widehat{U}_{0,\ell+\eta_{\ell}}(Z) > \lambda_{\varphi}} - \chi_{\widehat{U}_{0,\ell-1+\eta_{\ell-1}}(Z) > \lambda_{\varphi}}\bigg]$$

Theorem ([Haji-Ali, S., Teckentrup, 2022])

Let η_{ℓ} be such that $|\widehat{U}_{0,\ell+\eta_{\ell}}(Z) - \lambda_{\varphi}| \ge \sigma_{\ell+\eta_{\ell}} N_{\ell}^{(1-r)/r} N_{\eta_{\ell}}^{-1/r}$ or $\eta_{\ell} = \ell$. Then, for a root-mean-square error $\varepsilon > 0$

$$\begin{array}{ccc}
\mathsf{E}\Big[\left|U_{0}(Z)-\widehat{U}_{0,\ell}(Z)\right|^{q}\sigma_{\ell}^{-q}\Big] \propto N_{\ell}^{-q/2} &\Longrightarrow & \overset{\mathsf{Adaptive}}{\mathsf{MLMC}} \propto \varepsilon^{-2-2/q} \\
\mathsf{P}\big[\left|\widehat{U}_{0,\ell}(Z)-\lambda_{\varphi}\right|/\sigma_{\ell} \leq x\big] \propto x & & \widehat{U}_{0,\ell}(Z^{(1)}) \\
& & \widehat{U}_{0,\ell}(Z^{(1)}) & & \widehat{U}_{0,\ell}(Z^{(1)}) \\
& & & \widehat{U}_{0,\ell}(Z^{(2)}) & & \widehat{U}_{0,\ell+n_{\ell}}(Z^{(2)})
\end{array}$$

CVA [Giles, Haji-Ali, S., 2024]

$$\begin{split} \varphi &= \mathsf{P}\bigg[\frac{\mathsf{CVA}_H}{B_H} - \mathsf{CVA}_0 > \lambda_\varphi\bigg], \\ \mathsf{CVA}_t &= B_t \, \mathsf{E}^\mathsf{Q}\Big[\,\chi_{t \leq \tau \leq T} \, \mathsf{LGD} \, \mathsf{max}\Big\{\mathsf{E}^\mathsf{Q}\big[\,B_T^{-1}\pi(S_T)\,\big|\,\mathcal{G}_\tau\,\big], 0\Big\}\,\Big|\,\mathcal{G}_t\,\Big]. \end{split}$$

Using a combination of

- Milstein simulation of the assets S_T
- Nested multilevel Monte Carlo estimation
- Unbiased multilevel Monte Carlo sampling

we can express

$$\frac{\text{CVA}_H}{B_H} - \text{CVA}_0 = \text{E}[\Delta \mid Z],$$

where Z captures all relevant \mathcal{G}_H -measurable risk-factors and Δ is a random variable which can be sampled exactly.

$$arphi = \mathsf{P}[\ U_0(Z) > \lambda_{arphi}\]$$

$$U_0(Z) := \mathsf{E}[\ \Delta \ |\ Z\]$$

Approximate

$$U_0(Z) pprox \widehat{U}_{0,\ell}(Z) = rac{1}{N_\ell} \sum_{n=1}^{N_\ell} \Delta^{(n)}(Z).$$

Adaptively add more independent samples according to the value of $|\widehat{U}_{0,\ell}(Z)|/\sigma_{\ell}$, where σ_{ℓ}^2 is the conditional sample variance.

CVA: Numerical Results

$$\varphi = P[U_0(Z) > \lambda_{\varphi}]$$

Conclusion

- Multilevel Monte Carlo estimators can be nested to compute risk-measures involving the CVA, and are significantly more efficient than nested (single-level) Monte Carlo.
- Adaptive Sampling can be used to improve efficiency when approximating random variables about a discontinuity threshold.

Current/Future work:

- ▶ Combination of methods for solving $\varphi = P[U_0(Z) > \lambda_{\varphi}]$ with multilevel stochastic approximation techniques to find the quantile λ_{φ} .
- Nested biased multilevel estimators to relax convergence assumptions.
- ► More complex models of CVA, including posting of collateral and more advanced models of default times.

- F. Bourgey, S. De Marco, E. Gobet, and A. Zhou, *Multilevel Monte Carlo methods and lower-upper bounds in initial margin computations*, Monte Carlo Methods and Applications, 26 (2020), pp. 131–161.
- K. Bujok, B. Hambly, and C. Reisinger, Multilevel simulation of functionals of Bernoulli random variables with application to basket credit derivatives, Methodology and Computing in Applied Probability, 17 (2015), pp. 579-604.
- D. Elfverson, F. Hellman, and A. Målqvist, *A multilevel Monte Carlo method for computing failure probabilities*, SIAM/ASA Journal on Uncertainty Quantification, 4 (2016), pp. 312–330.
- M. Giles, K. Debrabant, and A. Rößler, *Numerical analysis of multilevel Monte Carlo path simulation using the Milstein discretisation*, Discrete and Continuous Dynamical Systems, 24 (2019), pp. 3881–3903.
 - M. Giles and A.-L. Haji-Ali, *Multilevel nested simulation for efficient risk estimation*, SIAM/ASA Journal on Uncertainty Quantification, 7 (2019), pp. 497–525.

- M. Giles, T. Nagapetyan, and K. Ritter, *Multilevel Monte Carlo approximation of distribution functions and densities*, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), pp. 267–295.
- A.-L. Haji-Ali, J. Spence, and A. Teckentrup, *Adaptive multilevel Monte Carlo for probabilities*, SIAM Journal on Numerical Analysis, 60 (2022), pp. 2125–2149.
- C.-H. Rhee and P. Glynn, *Unbiased estimation with square root convergence for SDE models*, Operations Research, 63 (2015), pp. 1026–1043.
- Y. Syed and G. Wang, Optimal randomized multilevel Monte Carlo for repeatedly nested expectations, arXiv preprint arXiv:2301.04095, (2023).
- Z. Xu, Z. He, and X. Wang, Efficient risk estimation via nested multilevel quasi-Monte Carlo simulation, Journal of Computational and Applied Mathematics, 443 (2024), p. 115745.
 - Z. Zhou, G. Wang, J. Blanchet, and P. Glynn, *Unbiased optimal stopping via the MUSE*, Stochastic Processes and their Applications, (2022).