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Motivation: CVA Capital Charge

» Valuation adjustments can be expressed through a series of
non-linear functions of nested conditional expectations.

> Approximation by nested Monte Carlo is expensive, especially
when the underlying market variables can only be
approximately sampled.

» In such settings, accurate computation of associated risk
measures using nested Monte Carlo simulation is
computationally infeasible.
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Motivation: CVA Capital Charge (Nested Simulation)

» Given market at time O - simulate Gg-measurable market and
credit risk factors under the physical measure P at short risk
horizon 0 < H <« 1.

» Given risk factors at time H, simulate instances of default 7
under the risk-neutral measure Q occurring before contract
maturity 7 > 0.

» Given the (risk-neutral) market state at default time 7 < T,
simulate random future payoffs m(St) based on the asset
values S7 under the risk-neutral measure.

Value-at-Risk formula:

_ P[CVAH
H

— CVAp > )\Lp],

CVA; = B EQ [ Xecror LGD max{EQ[ B7'm(S7) |G, ],0} | G |.
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Overview

Let X, Y, Z be random variables and f : R x R? — R sending
(u,y) — f(u,y) be Lipschitz in u and y. Consider the system

p = P[Uo(Z) > )\50]
Uo(Z) = E[f(Ui(Y), Y) | Z]
UL(Y) = E[X | Y].

Key features:

» Recursive approximation of nested expectations Uy(Z) and

U1(Y), paired with approximation of the variables X, Y and Z.

» Approximation of discontinuous observables:
Y= P[ UO(Z) > A@] = E[XU()(Z)>)\¢]'

Nested Monte Carlo simulation has O(s7°) cost for a root mean
square error accuracy .
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Multilevel Monte Carlo

Want to approximate

E[Q]
given approximate samples Q ~ Q, for £ € N, with
Cost(Qy) o 27
E[@— Q] <27
Var[ Q@ — Q] 2—hE
Then, let

_ JE[Q — Q1] £>0
E[AeQ]—{E[QO] (-0

L
E[QI~E[Q] =) E[AQ].

=0
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Multilevel Monte Carlo

Want to approximate

E[Q]
given approximate samples Q@ =~ Q, for £ € N, with
Cost(Qy) o 27
E[Q— Q]| x 27
Var[ Q@ — Q] o< 277%.

The cost of attaining root mean square error £ using multilevel
Monte Carlo is of order

1 B>
e llogel?  B=x
5_(7_6)/‘)‘ B < Y.
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Unbiased Multilevel Monte Carlo [Rhee, Glynn, 2015]

o0

E[Q] = Y E[A:Q] = E[(8.Q) 2/

=0

where k is a random, non-negative integer with probability mass
Pk =] = C27°
Provided,
Cost(Qy) o 27
E[1Q — Q9] 2-abBt/2

(A, Q)2%%/C; has bounded expected sampling cost and qth
moment when

qg B 1
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Overview

Let X, Y, Z be random variables and f : R x R? — R sending
(u,y) — f(u,y) be Lipschitz in u and y. Consider the system

©p = P[Uo(Z) > )‘50]
Uo(Z) = E[f(Ua(Y), Y) | Z]
Ui(Y)=E[X]|Y].
Key features:

» Recursive approximation of nested expectations Uy(Z) and
U1(Y), paired with approximation of the variables X, Y and Z.

» Approximation of discontinuous observables:

Y= P[U()(Z) > AW] = E[XUO(Z)>)\¢]'
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Nested Simulation

Consider now the nested pair of expectations

Uo = E[f(U1(Y), V)]
U(Y) = E[X|Y]

Problem: Exact samples of X and Y are not available. Instead,
given Y =y we approximate X = Xi(y). Similarly, Y ~ Y.

Solution: Combine nested ‘inner’ unbiased multilevel Monte Carlo
estimate of Ui(y), given Y =y, within an ‘outer’ unbiased
multilevel Monte Carlo estimate of Up.
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Antithetic Multilevel Difference

Consider the nested pair of expectations
Uo = E[f(LL(Y), Y)]
Ui(Y) = E[X | Y] =E[ A, X(Y)29" /¢, ( Y]
Plr1 = k] = C, 27k
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Antithetic Multilevel Difference
Consider the nested pair of expectations
Up = E[f(UL(Y), Y)]
Ui(Y) = E[X| Y] = E[AMX(Y)%:"“/C@ ( Y]
Plr1 = k] = C,, 27k
~ 1 Ne
Ure(Y) = Ny D (B X(V)2971/C )M, Np o 2F

n=1
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Antithetic Multilevel Difference
Consider the nested pair of expectations
Up = E[F(UL(Y), V)]
Ui(Y) = E[X|Y] = E[AMX(Y)zﬁﬂl/Ql ‘ Y]
Plr1 = k] = C, 27k
1
i I (1K1 n YA
Ure(Y) = o nz::l(AmX(Yp /C)M Ny o 2

Antithetic multilevel difference [Bourgey, De Marco, Gobet, 2020],

[Bujok, Hambly, Reisinger, 2015], [Giles, Haji-Ali, 2019]:
1
— (0 1 o
Bof = (DY), Ye) = 5 > FO0)_1(Yen), Yer),

where

1
. 1 0
Ore(y) = 5 > Uiy a(v) = 0.
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Convergence

Theorem ([Giles, Haji-Ali, S., 2024])

Assume f is continuous and piecewise-twice differentiable, with
bounded first and second derivative, and that there is 3 > 1 and
q > 2 such that

Cost(Xk(y)) + Cost(Yy) oc 2K 4 2¢
ELIXk(Ye) = X1 (Yo)| 71+ ELI| Yz = Yo |[7] oc 27 99K/2 4 279542

Then, there exists (p, (1 > 1 such that for P[rko =] = C§02*<°e,
the random variable
(Do) 297/ Cg,

has bounded expected sampling cost and variance and

Up = E| (Do) 2970/ C, ]
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Overview

Let X, Y, Z be random variables and f : R x R? — R sending
(u,y) — f(u,y) be Lipschitz in u and y. Consider the system

¢ =P[Uo(Z) > )]
Uo(z ):E[A( )1 Z = 2]

UOK NezAn)

Key features:

» Recursive approximation of nested expectations Uy(Z) and
U1(Y), paired with approximation of the variables X, Y and Z.

» Approximation of discontinuous observables:

© = P[ UO(Z) > )\@] = E[XUO(Z)>>\¢:|‘
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Multilevel Monte Carlo for Probabilities

P[Uo(Z) > Ap] = E[Xg, 2y 1+Z XG0 2500 = X0 (250,

Theorem
For root mean square error € and (random), positive-valued,
normalising factor oy

EHUO(Z) - UO,Z(Z)“’J;‘?] x N 92

—  MLMC  .—5/2-2/q
-~ Cost
P[1Uo,e(Z) = Apl/oe < x] o x

~

Uo,l(ZM)
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Previous Research

> Explicit smoothing X, ~ g(x):
[Giles, Nagapetyan, Ritter, 2015].

» Numerical smoothing:

[Bayer, Ben Hammouda, Tempone, 2023], [Giles, Debrabant,
RoRler, 2019].

» Path branching:
[Giles, Haji-Ali, 2022].

> Adaptivity:
» For partial differential equations with random coefficients
[Elfverson, Hellman, M3lqvist, 2016].

» For nested expectations
[Haji-Ali, S., Teckentrup, 2022], [Giles, Haji-Ali, 2019].

» Quasi-Monte Carlo:
[Xu, He, Wang, 2020].
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Adaptivity
L
RS E[XUo,o(Z)>,\q,] + ; E |:XUO>€+W(Z)>)\¢ — XUo,zfurr,e_l(Z)»\w
—1

Theorem ([Haji—AIi, S., Teckentrup, 2022])

Let 1)y be such that ‘UO,HW(Z) — | > 05+772Nél_r)/rN7;1/r or
ne = L. Then, for a root-mean-square error € > 0

— U 95-a —q/2 _
EHU?\(Z) UM(Z)‘ e } o Vg = A&?_Fl)\?(\ée x e272/9
P[1Uo,e(Z) — Apl/ov < x] ox x Cost
Uo.e(Z2M)
Uo.o(Z®)
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CVA [Giles, Haji-Ali, S., 2024]

A
:P[CV H—CVA0>)\¢],

CVA, = B, EQ [XtSTSTLGDmax{E [B7'7(S7)| -], }‘gt]

Using a combination of
» Milstein simulation of the assets St
» Nested multilevel Monte Carlo estimation
» Unbiased multilevel Monte Carlo sampling

we Can express

VAL cvag = E[A]Z],

where Z captures all relevant Gy-measurable risk-factors and A is

a random variable which can be sampled exactly.
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CVA [Giles, Haji-Ali, S., 2024]

¢ =P[U(Z) > A;]
Uo(Z) = E[A] Z]

» Approximate

Un(2) = U (2) = -5 A0(2).

» Adaptively add more independent samples according to the
value of |Up¢(Z)| /o4, where o2 is the conditional sample
variance.
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CVA: Numerical Results

o =P[Up(Z) > A, ]

—©—- Recursive Multilevel —+— Adaptive
— £7% (Monte Carlo) ---- ¢ ?(loge)? = £—5/2

10°

10°

Cost x&2

10%

103

102 101
Normalised ¢
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Conclusion

» Multilevel Monte Carlo estimators can be nested to compute
risk-measures involving the CVA, and are significantly more
efficient than nested (single-level) Monte Carlo.

» Adaptive Sampling can be used to improve efficiency when
approximating random variables about a discontinuity
threshold.

Current/Future work:

» Combination of methods for solving ¢ = P[ Up(Z) > A, ] with
multilevel stochastic approximation techniques to find the
quantile A,.

> Nested biased multilevel estimators to relax convergence
assumptions.

» More complex models of CVA, including posting of collateral
and more advanced models of default times.
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