Stochastic Volterra rough volatility models and Markovian approximations

João Guerra

Joint work with Henrique Guerreiro

University of Lisbon, ISEG and CEMAPRE-REM, Portugal ICCF 2024

Amsterdam, April 5, 2024

Outline

1 Introduction

- **2** Stochastic Volterra models
- **3** VIX pricing
- 4 Least-squares Monte Carlo
- **5** Numerical experiments
- 6 Markovian approximations
- Rough CIR vol-of-vol model

Motivation

• Empirical results of volatility time series (Gatheral *et al.*, 2018) indicate that increments of log-volatility behave like those of a fractional Brownian motion (fBm):

$$\log \sigma_{t+\Delta_t} - \log \sigma_t \propto Z_{t+\Delta_t}^H - Z_t^H.$$
(1)

- Observed VIX smile is upward slopping, but the rBergomi model produces flat smiles.
- The VIX index measures market expected volatility ("fear" index) and is defined by

$$VIX_{T} := \sqrt{\frac{1}{\Delta} \mathbb{E}\left[\int_{T}^{T+\Delta} v_{u} \, du \mid \mathcal{F}_{T}\right]}, \qquad (2)$$

with $\Delta = 30$ days.

Motivation

- Consider Stochastic Volterra models introduced by (Horvath *et al.*, 2020), where the vol-of-vol may depend on the volatility and/or may not be Markovian.
- If the vol-of-vol is Markovian, the numerical method of least squares Monte-Carlo (LSMC) can be applied for VIX option pricing.
- Contribute to the solution of the joint calibration problem: find a stochastic volatility model with realistic dynamics that fits both the SP500 and VIX implied volatility smiles.
- In the case of non-Markovian vol-of-vol, we explore the application of a Markovian approximation of the vol-of-vol process.

The rBergomi model

Model the variance as

$$v_{u} = A_{0}(u) \exp\left(2\sqrt{\gamma} \int_{0}^{u} K_{\alpha}(u-s) dW_{s}\right)$$
(3)

where A_0 is a deterministic function, γ is a positive constant and K_{α} is the fractional kernel

$$K_{\alpha}(x) = x^{\alpha - 1}, \quad \alpha := H + \frac{1}{2}, \quad H \in (0, 1/2).$$
 (4)

The asset price follows the dynamics

$$dS_t = S_t \sqrt{v_t} d\overline{W}_t \tag{5}$$

where \overline{W} and W are correlated.

Stochastic Volterra models

- A stochastic Volterra model is a natural generalization of the rBergomi model, where we replace the vol-of-vol γ by a stochastic process Γ.
- More precisely:

$$v_u = A_0(u) \exp(2X_u), \tag{6}$$

where A_0 is a deterministic function and X is a truncated Brownian semi-stationary process (TBSS) given by

$$X_{u} = \int_{0}^{u} \sqrt{\Gamma_{s}} K_{\alpha}(u-s) \, dW_{s}. \tag{7}$$

Representation of SVM

Proposition

For $u \ge t \ge 0$, let

$$A_t(u) := \frac{\xi_t(u)}{h_t(u)},\tag{8}$$

where

$$h_t(u) = \mathbb{E}\left[E_{t,u}(u) \mid \mathcal{F}_t\right] \tag{9}$$

and

$$E_{p,q}(u) = \exp\left(2\int_{p}^{q} K_{\alpha}(u-s)\sqrt{\Gamma_{s}} \,\mathrm{d}W_{s}\right). \tag{10}$$

Then we have the time-invariant decomposition

$$v_u = A_0(u)E_{0,u}(u) = A_t(u)E_{t,u}(u).$$
(11)

VIX option pricing

• The "hard" part of VIX pricing is the curve h_T . Indeed,

$$\Delta VIX_T^2 = \int_T^{T+\Delta} \xi_T(u) \,\mathrm{d}u = \int_T^{T+\Delta} \frac{\xi_0(u)}{h_0(u)} E_{0,T}(u) h_T(u) \,\mathrm{d}u. \quad (12)$$

• $E_{0,T}(u)$ can be computed simply by using Riemann sums. ξ_0 can be observed from the market or assumed constant (one more parameter of the model). As for h_0 , it can be written as follows:

$$h_0(u) = \mathbb{E}\left[E_{0,T}(u)h_T(u)\right].$$

Least Squares Monte Carlo

- Take the infinite dimensional state variable h_T . Then, fix a time grid $(u_j)_{j=1}^n$ between T and $T + \Delta$ and obtain the projection $Y = (h_T(u_j))_{j=1}^n$.
- We use the Least squares Monte Carlo (LSMC) method (Longstaff & Schwartz, 2001) - to approximate Y. Since Γ is Markovian, we have

$$Y_{j} = h_{\mathcal{T}}(u_{j}) = \mathbb{E}\left[2\int_{\mathcal{T}}^{u_{j}}\sqrt{\Gamma_{s}}\mathcal{K}_{\alpha}(u_{j}-s)\,\mathrm{d}W_{s}\mid\Gamma_{\mathcal{T}}\right] = f_{j}(\Gamma_{\mathcal{T}}),\quad(13)$$

for some deterministic function f_j .

• Write this as a classical multivariate regression problem:

$$Y = f(\Gamma_{T}) = \tilde{f}(\Gamma_{T}) + \varepsilon, \qquad (14)$$

where \tilde{f} is the deterministic approximation function and ε is the stochastic error term.

Least Squares Monte Carlo

- Start by producing $\Gamma_T^{(i)}$, i = 1, ..., K outer simulations.
- Fit a regression model \tilde{f} with $\Gamma_T^{(j)}$ as predictors and y_j as target. A typical regression model is a linear regression on Hermite polynomials

$$\tilde{f}(x) = \sum \alpha_k H_k(x).$$
(15)

• Use the regression to obtain $Y_i = \mathbb{E}[L | \mathcal{F}_T]$ based on Γ_T^i (using $\tilde{f}(\Gamma)$). For more details, see (Guerreiro & Guerra, 2022).

CIR stochastic Volterra model

• Let us assume that the vol-of-vol is modeled by a CIR process:

$$d\Gamma_t = \kappa(\theta - \Gamma_t) \,\mathrm{d}t + \delta \sqrt{\Gamma_t} \,\mathrm{d}B_t, \tag{16}$$

where $\theta, \kappa, \delta > 0$ and B is a sBm correlated with W and \overline{W} with correlation matrix for (\overline{W}, W, B) :

$$\Sigma = \begin{bmatrix} 1 & \rho & \rho_S \\ \rho & 1 & \rho_V \\ \rho_S & \rho_V & 1 \end{bmatrix}.$$

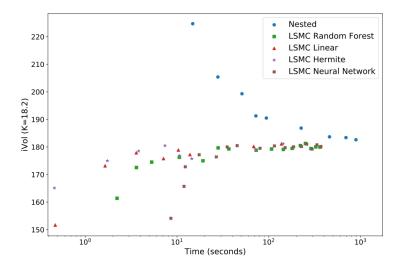


Figure: Implied Volatility Convergence - Monte-Carlo method

Calibrated S&P500 smile

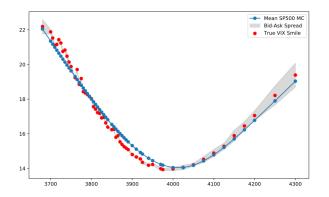


Figure: Calibrated S&P500 smile

Calibrated VIX smile

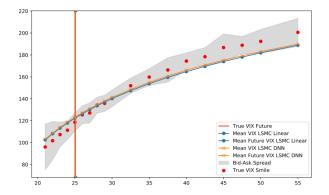


Figure: Calibrated VIX smile

Calibrated parameters

Parameter	Value
ρ_{S}	-0.974772
ρ_V	0.972984
δ	1.643538
γ	0.137467
Н	0.063667
κ	48.868527
$\xi_0^{(1)}$	0.058979
$\xi_{0}^{(2)}$	0.072898
ρ	-0.90092
θ	0.037869

Table: Calibrated Values

Rough vol-of-vol

- The SVM framework is able to account for rough vol-of-vol. This has been suggested by high-frequency data analysis for major volatility indexes (Da Fonseca & Zhang, 2019): log of vol-of-vol can be modeled by a fBm with H < 1/2.
- The LSMC approach is not well suited for rough vol-of-vol models.
- We consider Markovian approximations for rough vol-of-vol models. These Markovian approximations are able to produce processes which are rough-like processes remaining analytically tractable.

Markovian approximations

• Stochastic rough Volterra equation:

$$X_t = x_0 + \int_0^t \mathcal{K}(t-s)b(X_s)ds + \int_0^t \mathcal{K}(t-s)\sigma(X_s)dW_s, \quad (17)$$

where $x_0 \in \mathbb{R}$, *b* and σ are globally Lipschitz functions and the kernel $K \in L^2_{loc}(\mathbb{R}^+)$.

• Any completely monotone kernel (such as the fractional kernel) can be approximated by

$$\tilde{\mathcal{K}}(t) = \sum_{i=1}^{n} w_i e^{-c_i t}$$
(18)

for some weights $w_1, ..., w_n \in \mathbb{R}^+$ and points $c_1, ..., c_n \in \mathbb{R}^+_0$ (see (Alfonsi & Kebaier, 2021)).

Markovian approximations

Proposition

Suppose $m_1, ..., m_n \in \mathbb{R}$ are such that $\sum_i w_i m_i = x_0$. Then the solution of

$$\tilde{X}_t = x_0 + \int_0^t \tilde{K}(t-s)b(X_s)ds + \int_0^t \tilde{K}(t-s)\sigma(X_s)dW_s.$$
(19)

is given by

$$\tilde{X}_t = \sum_{i=1}^n w_i X_t^i, \tag{20}$$

where X^i solves the SDE

$$dX_t^i = c_i(m_i - X_t^i)dt + b\left(\sum_{j=1}^n w_j X^j\right)dt + \sigma\left(\sum_{j=1}^n w_j X^j\right)dW_t, \quad (21)$$

 $X_0'=m_i.$

Rough CIR vol-of-vol model

• Let us model the rough vol-of-vol as a rough CIR process:

$$X_t = \int_0^t K_\alpha(t-s)\kappa(\mu-X_s)ds + \int_0^t K_\alpha(t-s)\nu\sqrt{X_s}dZ_s, \quad (22)$$

where κ, μ, ν are positive constants.

• Markovian approximation of X:

$$\Gamma_s = \sum_{i=1}^n w_i X_s^i, \tag{23}$$

where

$$dX^{i} = c_{i}(m_{i} - X^{i})ds + \kappa(\mu - \sum_{j=1}^{n} w_{j}X^{j})ds + \nu\sqrt{\sum w_{j}X^{j}}dZ, X_{0}^{i} = m_{i},$$
(24)

$$\sum_{i=1}^{n} w_i m_i = \Gamma_0 > 0.$$
 (25)

Rough CIR vol-of-vol

Proposition

Suppose there exists j such that

$$\zeta := \sum_{i=1}^{n} w_i (c_i m_i + \kappa \mu) > \frac{1}{2} \nu^2 w_j^2.$$
(26)

Then the SDE (24) has a unique continuous strong solution such that $\Gamma_t = \sum w_i X_t^i > 0$ for all $t \ge 0$ a.s.

Rough CIR vol-of-vol

 Suppose that Z is independent of W so that Γ is independent of W. Then, we have

$$h_t(u) = \mathbb{E}\left[\exp\left(2\int_t^u \Gamma_s K^2(u-s)\,ds\right)\,\Big|\,\mathcal{F}_t\right].$$
 (27)

 We wish to investigate if we can obtain an exponentially affine formula for h_t. We will consider the process

$$M_{s} = \exp\left(2\int_{t}^{s} \Gamma_{r} K^{2}(u-r) dr\right) \exp\left(\varphi(u-s) + \sum_{i=1}^{n} w_{i}\psi_{i}(u-s)X_{s}^{i}\right)$$
(28)
for $t \leq s \leq u$. Functions $(\varphi, \psi_{1}, ..., \psi_{n})$ will be constructed so that M
is a local martingale.

Local martingale

Applying Itô formula to M, we obtain:

Proposition

Let $0 < t \leq u$ and $(X^1,...,X^n)$ solve SDE (24). Suppose $(y_1,...,y_n)$ solves the ODE

$$y'_{i} = -c_{i}(y_{i}+2G) + R((y_{1}+2G, ..., y_{n}+2G)) = -c_{i}\psi_{i} + R(\psi_{1}, ..., \psi_{n}), y_{i}(0) = 0$$
(29)

where $R(z_1, ..., z_n) := -\kappa \sum_{i=1}^n w_i z_i + \frac{1}{2}\nu^2 \sum_{1 \le i,j \le n} w_i w_j z_i z_j$ and $G(t) := \int_0^t K_{\alpha}^2(s) \, ds$. Define the functions ψ_i by $\psi_i = y_i + 2G$ and suppose φ solves the ODE

$$\varphi' = F(\psi_1, \dots \psi_n), \quad \varphi(0) = 0, \tag{30}$$

where $F(z_1, ..., z_n) := \sum_{i=1}^n w_i z_i (c_i m_i + \kappa \mu)$. Define the process M by (28) using these functions $(\varphi, \psi_1, ..., \psi_n)$. Then, M is a local martingale in [t, u].

Existence of solutions for the ODE's

Proposition

Define $R_i(x_1,...x_n) := -c_i x_i + R(x_1,...x_n)$. Let $\Lambda > 0$ and assume there exists a vector $(a_1,...,a_n)$ such that $2G(\Lambda) + \Lambda \max_Q R_i \le a_i$, where Q is the set $Q = \{x \in \mathbb{R}^n \mid x_i \in \{0, a_i\}, i = 1, ..., n\}$. Then (29) and (30) have solutions on $[0, \Lambda]$ with bounds

$$0 \le \psi_i := y_i + 2G \le a_i, \qquad 0 \le \varphi \le \Lambda \max_Q F.$$
(31)

Conclusions

- We proposed a method for VIX derivatives pricing in the generalized framework of stochastic Volterra models, by using the LSMC method
- We obtained good qualitative fits for the joint SP-VIX calibration problem.
- For the non-Markovian model of rough vol-of-vol, we considered Markovian approximations and explored the case of the rough CIR model.
- Partial results: we identified a key martingale condition to express the VIX in terms of the solution of a certain ODE and provided sufficient conditions for the existence of solutions, we verified that the process associated to an efficient VIX pricing is a local martingale.

Thank you for your attention!

Acknowledgments

Supported by the Project CEMAPRE/REM - UIDB/05069/2020 - financed by FCT/MCTES through national funds

Abi Jaber, Eduardo. 2019. Lifting the Heston model. *Quantitative Finance*, **19**(12), 1995–2013.

Abi Jaber, Eduardo, & El Euch, Omar. 2019. Multifactor approximation of rough volatility models. SIAM Journal on Financial Mathematics, 10(2), 309–349.

Abi Jaber, Eduardo, Larsson, Martin, & Pulido, Sergio. 2019. Affine Volterra processes. *The Annals of Applied Probability*, **29**(5), 3155 – 3200.

Alfonsi, Aurélien, & Kebaier, Ahmed. 2021. Approximation of Stochastic Volterra Equations with kernels of completely monotone type. *arXiv* preprint arXiv:2102.13505.

Alos, Elisa, García-Lorite, David, & Muguruza, Aitor. 2018. On smile properties of volatility derivatives and exotic products: understanding the VIX skew. *arXiv preprint arXiv:1808.03610*.

Bayer, Christian, & Breneis, Simon. 2023. Markovian approximations of stochastic Volterra equations with the fractional kernel. *Quantitative Finance*, 23(1), 53–70.

Bayer, Christian, Friz, Peter, & Gatheral, Jim. 2016. Pricing under rough volatility. *Quantitative Finance*, **16**(6), 887–904.

Bennedsen, Mikkel, Lunde, Asger, & Pakkanen, Mikko S. 2017. Hybrid scheme for Brownian semistationary processes. *Finance and Stochastics*, **21**(4), 931–965.

Da Fonseca, José, & Zhang, Wenjun. 2019. Volatility of volatility is (also) rough. *Journal of Futures Markets*, **39**(5), 600–611.

Duffie, Darrell, & Kan, Rui. 1996. A yield-factor model of interest rates. *Mathematical Finance*, **6**(4), 379–406. Gatheral, Jim, Jaisson, Thibault, & Rosenbaum, Mathieu. 2018. Volatility is rough. *Quantitative Finance*, **18**(6), 933–949.

Guerreiro, Henrique, & Guerra, João. 2022. Least squares Monte Carlo methods in stochastic Volterra rough volatility models. *Journal of Computational Finance*, **26**(3), 73–101.

Guerreiro, Henrique, & Guerra, João. 2024. Pseudo Rough Vol-of-Vol Through Markovian Approximation. Available at SSRN: https://ssrn.com/abstract=4729788 or http://dx.doi.org/10.2139/ssrn.4729788.

Horvath, Blanka, Jacquier, Antoine, & Tankov, Peter. 2020. Volatility Options in Rough Volatility Models. SIAM Journal on Financial Mathematics, 11, 437–469. Kallsen, Jan, & Muhle-Karbe, Johannes. 2010. Exponentially affine martingales, affine measure changes and exponential moments of affine processes. *Stochastic Processes and their Applications*, **120**(2), 163–181.

Longstaff, Francis, & Schwartz, Eduardo S. 2001. Valuing American Options by Simulation: A Simple Least-Squares Approach. *Review of Financial Studies*, **14**(1), 113–47.