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Introduction

Motivation

® Empirical results of volatility time series (Gatheral et al. , 2018)
indicate that increments of log-volatility behave like those of a
fractional Brownian motion (fBm):

logotin, — logos o ZﬂFAt -zl (1)

® QObserved VIX smile is upward slopping, but the rBergomi model
produces flat smiles.

® The VIX index measures market expected volatility (“fear” index) and

is defined by
VIXT = lIE
T~ \a

with A = 30 days.

/T+A vy du | .7-"7], (2)
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Introduction

Motivation

¢ Consider Stochastic Volterra models introduced by (Horvath et al. ,
2020), where the vol-of-vol may depend on the volatility and/or may
not be Markovian.

® |f the vol-of-vol is Markovian, the numerical method of least squares
Monte-Carlo (LSMC) can be applied for VIX option pricing.

® Contribute to the solution of the joint calibration problem: find a
stochastic volatility model with realistic dynamics that fits both the
SP500 and VIX implied volatility smiles.

® |n the case of non-Markovian vol-of-vol, we explore the application of
a Markovian approximation of the vol-of-vol process.

Stochastic Volterra rough volatility models Amsterdam, April 5, 2024 4/31



Stochastic Volterra models

The rBergomi model

® Model the variance as
vy = Ao(u) exp <2ﬁ/ Ka(u — s)dWs) (3)
0

where Ag is a deterministic function, 7y is a positive constant and K,
is the fractional kernel

1
Ko(x) =x>"1 a:=H+ 5> H e (0,1/2). (4)
® The asset price follows the dynamics
dSt == St\/thWt (5)

where W and W are correlated.
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Stochastic Volterra models

Stochastic Volterra models

® A stochastic Volterra model is a natural generalization of the
rBergomi model, where we replace the vol-of-vol v by a stochastic
process [.

® More precisely:
vy = Ao(u) exp(2X,), (6)

where A is a deterministic function and X is a truncated Brownian
semi-stationary process (TBSS) given by

X, = / Ko (1 — 5) dWs. (7)
0
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Stochastic Volterra models

Representation of SVM

Proposition
Foru>t>0, let
Auu) = 340, ©
where
he(u) = E[Eeu(u) | Fi] (9)
and

q
Epq(u) =exp (2/ Kao(u — s)\/l_des> . (10)
P
Then we have the time-invariant decomposition

vy = Ao(u)Eo,u(u) = Ae(u)Er,u(u). (11)
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VIX pricing

VIX option pricing

® The "hard” part of VIX pricing is the curve ht. Indeed,

T+A THA ¢ (4
AV/X%:/T §T(u)du:/T iZEU;EO,T(u)hT(u)du. (12)

® Eo 1(u) can be computed simply by using Riemann sums. & can be
observed from the market or assumed constant (one more parameter
of the model). As for hg, it can be written as follows:

ho(u) =FE [E07T(U)hT(U)] .
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Least-squares Monte Carlo

Least Squares Monte Carlo

® Take the infinite dimensional state variable ht. Then, fix a time grid
(uj)]—; between T and T + A and obtain the projection
Y = (hr(y)))is-

® We use the Least squares Monte Carlo (LSMC) method - (Longstaff
& Schwartz, 2001) - to approximate Y. Since I' is Markovian, we have

Y = hr(y) = [/ VTsKa(uj — s)dW, | T7| = £(T7), (13)

for some deterministic function f;.

® Write this as a classical multivariate regression problem:
Y=f(Tr)=Ff(1)+e, (14)

where f is the deterministic approximation function and ¢ is the
stochastic error term.
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Least-squares Monte Carlo

Least Squares Monte Carlo

® Start by producing I'(i), i =1,..., K outer simulations.

® For each simulation of a sample of N outer simulations (N < K),
produce M inner simulations and compute an estimate y; of

E[L|r¥)},j=1,...,N.

* Fit a regression model f with F({;) as predictors and y; as target. A
typical regression model is a linear regression on Hermite polynomials

F(x) = awHi(x). (15)

® Use the regression to obtain Y; = E[L | 7] based on M (using
(). For more details, see (Guerreiro & Guerra, 2022).
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Numerical experiments

CIR stochastic Volterra model

® | et us assume that the vol-of-vol is modeled by a CIR process:
drt = /-i(@ - I-t) dt + (5\/ rtdBt, (16)

where 0, x,6 > 0 and B is a sBm correlated with W and W with
correlation matrix for (W, W, B):

1 p ps
r=|p 1 pv
ps pv 1
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Numerical experiments

=18.2)

iVol (K

. * Nested
220 = LSMC Random Forest
4 LSMC Linear
510 »  LSMC Hermite
. = LSMC Neural Network
200 .
190 S e
L)
. ° 4
180 - L Bt A o e W
A AN =
* " [ ]
A ™ ®
170
* =
160 "
E ]
'Y
150
10° 10t 102 103

Time (seconds)

Figure: Implied Volatility Convergence

- Monte-Carlo method

Stochastic Volterra

y models Amsterdam, April 5, 2024

12/31



Numerical experiments

Calibrated S&P500 smile
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Figure: Calibrated S&P500 smile
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Numerical experiments

Calibrated VIX smile
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Figure: Calibrated VIX smile
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Numerical experiments

Calibrated parameters

H Parameter Value H
s —0.974772
py 0.972984

5 1.643538
~ 0.137467
H 0.063667
K 48.868527
3% 0.058979
@ 0.072898
P ~0.90092
0 0.037869

Table: Calibrated Values
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Markovian approximations

Rough vol-of-vol

® The SVM framework is able to account for rough vol-of-vol. This has
been suggested by high-frequency data analysis for major volatility
indexes (Da Fonseca & Zhang, 2019): log of vol-of-vol can be
modeled by a fBm with H < 1/2.

® The LSMC approach is not well suited for rough vol-of-vol models.
® We consider Markovian approximations for rough vol-of-vol models.

These Markovian approximations are able to produce processes which
are rough-like processes remaining analytically tractable.
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Markovian approximations

Markovian approximations

® Stochastic rough Volterra equation:
t t
X :xo+/ K(ts)b(Xs)ds+/ K(t —s)o(Xs)dWs,  (17)
0 0

where xg € R, b and ¢ are globally Lipschitz functions and the kernel
K e L2 _(RT).

loc

e Any completely monotone kernel (such as the fractional kernel) can
be approximated by

K(t)=> we " (18)
i=1

for some weights wy, ..., w, € R* and points cy, ..., ¢, € R{ (see
(Alfonsi & Kebaier, 2021)).
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Markovian approximations

Markovian approximations

Proposition

Suppose my, ..., m, € R are such that ). wiym; = xo. Then the solution of

t t
Xt =Xo+/ K(ts)b(Xs)ds+/ K(t — s)o(Xs)dWs. (19)
0 0
is given by
)?t = Z Wl'Xtia (20)
i=1

where X' solves the SDE

dX! = c;i(m; — X!)dt + b wiX/ | dt +o wiX! | dw,
t ( t) Jz_; i Jz_; g t (21)
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Rough CIR vol-of-vol model

Rough CIR vol-of-vol model

® |et us model the rough vol-of-vol as a rough CIR process:

xt:/0 Ka(t—s)lﬁ;(,u—Xs)ds—i-/O Ko(t — s)v/XsdZs,  (22)

where k, u, v are positive constants.
® Markovian approximation of X:

I_s = Z WiX.si7 (23)
i=1

where
dX' = c;(m;—Xi)ds+/~i(,LL—zn: WJ-Xj)ds+m/Z w; XidZ, X5 = mj,
jZI (24)
2”: wim; =g > 0. (25)
i=1
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Rough CIR vol-of-vol model

Rough CIR vol-of-vol

Proposition
Suppose there exists j such that

n

1
¢:= Z wi(cimj + k) > Eyzwjz. (26)
i=1

Then the SDE (24) has a unique continuous strong solution such that
Me=>w X/ >0forallt >0 a.s.
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Rough CIR vol-of-vol model

Rough CIR vol-of-vol

® Suppose that Z is independent of W so that I is independent of W.
Then, we have

he(u) = E [exp (2 /t MeK2(u—s) ds> ] ft} . (27)

® We wish to investigate if we can obtain an exponentially affine
formula for h;. We will consider the process

M = exp (2 /S M K2(u—r) dr) exp (ga(u —s)+ z”: wii(u — s)XS">
t i=1

(28)
for t <s < u. Functions (¢, 41, ..., %) will be constructed so that M
is a local martingale.
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Rough CIR vol-of-vol model

Local martingale

Applying It6 formula to M, we obtain:
Proposition

Let 0 < t < wu and (X1, ..., X") solve SDE (24). Suppose (y1, ..., yn) solves
the ODE

yi = —ci(yi+2G)+R((y1+2G, ..., yn+2G)) = —cithi+R(¥1, ..., ¥n), yi(0) = C

(29)
where R(z1,...,zp) == —K Y 11 W;Zj + %1/2 ZISiJSn wiw;zizj and
G(t) := [, K2(s) ds. Define the functions v; by ¥ = y; + 2G and
suppose ¢ solves the ODE
¢ = F(1,...40n), ©(0) =0, (30)

where F(z1,...,z5) := >4 wjzi(cimj + k). Define the process M by
(28) using these functions (¢, 1, ...,%n). Then, M is a local martingale in
[t, u].
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Rough CIR vol-of-vol model

Existence of solutions for the ODE's

Proposition

Define Ri(x1,...xn) := —cixi + R(x1,...xn). Let A > 0 and assume there
exists a vector (a1, .., an) such that 2G(\) + Amaxg R; < a;, where Q is
the set Q = {x € R" | x; € {0, a;},i =1,...,n}.

Then (29) and (30) have solutions on [0, ] with bounds

0 <%=y +2G < a, OgcpgAmng. (31)
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Rough CIR vol-of-vol model

Conclusions

® We proposed a method for VIX derivatives pricing in the generalized
framework of stochastic Volterra models, by using the LSMC method

® \We obtained good qualitative fits for the joint SP-VIX calibration
problem.

® For the non-Markovian model of rough vol-of-vol, we considered
Markovian approximations and explored the case of the rough CIR
model.

® Partial results: we identified a key martingale condition to express the
VIX in terms of the solution of a certain ODE and provided sufficient
conditions for the existence of solutions, we verified that the process
associated to an efficient VIX pricing is a local martingale.
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Rough CIR vol-of-vol model

Thank you for your attention!
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Rough CIR vol-of-vol model
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