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This paper in a nutshell

CLIMACRED model for climate scenario-contingent valuation,
linking firm’s default probability (PD) to climate scenarios (NGFS)

Changes in expectations about materialization of climate policy
scenarios lead to adjustments in firms’ PD and bond value

Closed-form expressions for the adjustments in firms’ PD and value
of issued bonds: analytical solutions supported by empirical results

Revenues shares from energy technologies evolve dynamically,
coherently with the scenario

Applications in supervisory climate stress-test, e.g. Swiss National
Bank, Monetary Authority of Singapore, Banco de Mexico, NGFS.
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Motivation: climate risk challenges traditional financial
valuation and risk assessment

Climate risk brings about a new type of financial risk
[Battiston ea. 2017 NCC; NGFS 2019, IPCC AR6 2022]:

Endogeneity: decision makers’ perception of climate risks impacts
its materialisation by affecting policy and investment decisions
Deep uncertainty, non-linearity of climate impacts and tipping
points (irreversibility) [Steffen ea 2018; Lenton ea 2019]

Standard approaches to financial valuation and risk
management are not adequate [Battiston 2019 BdF]:

Based on past data (e.g. reported emissions, announcements)
But with climate, statistical properties of the future differ from the
past: less relevant to estimate coeffiecients based on past info
Stress-test rely on short-term scenarios vs long-term climate impacts
Incomplete markets (e.g. insurance) limit hedging strategies.
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Motivation: climate scenarios-contingent valuation

Forward-looking dimension of risk: need to work with scenarios

Climate scenarios for financial risk assessment are developed by the
Network for Greening the Financial System (NGFS)

Figure: Output trajectories (wind, coal) across 3 scenarios (CurrPolicies, Delayed

Transition, NetZero2050) for the EU, 2020-2070, under model REMIND-Mag-Pie.

Source: NGFS 2022.
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Motivation: climate scenarios-contingent valuation

Trajectories of future cash flows may depend on climate scenarios:
2C scenario: output and cash flows of fossil firms due to drop vs
business-as-usual scenario
However, output and cash flows of low-carbon firms (e.g.
electricity/wind) expected to increase

Lack of a credible carbon price signal (Stiglitz, 2016) contributes to
ambiguity (Berger ea. 2017; Hansen and Miao 2022) on
expectations’ about the realization of mitigation scenarios

Probabilities of scenarios are difficult to determine because of the
endogeneity of climate risk (Battiston ea. 2021)

Ambiguity and endogeneity of scenarios motivates further the idea
to carry out a scenario-contingent valuation (e.g. NGFS).
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Related work: climate financial risk literature

Climate financial risk

Battiston ea. (2017)’s Climate Stress-test: first work to establish
the use of climate transition scenarios to adjust financial valuation
of securities and risk measures (transition risk)

Monasterolo ea. (2018): credit portfolios of Chinese development
banks in energy projects loans

Roncoroni ea. (2021): systemic effects in networks of banks and
investment funds, arising from portfolios overlap (Banco de Mexico)

Battiston ea. (2021): endogeneity of climate risk. Scenario
trajectories affected by investors’ expectations about policy cedibility

Bressan ea. (2023): Asset-level climate risk assessment (vs
aggregate risk scores) is key to avoid large understimation of losses.
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Related work: carbon risk pricing

Impact of climate policies on prices/premia (stocks/bonds/loans)

Equity (Monasterolo and de Angelis, 2020 EE, 2023; Pastor ea.
2022 JFE; Bolton and Kacperczyk 2021 JFE; Avramov ea. 2021
JFE, Zerbib 2022, etc.)

Bond Alessi ea. 2021 JFS; Zerbib 2019 JBF; Ehlers ea. 2022 JBF)

Credit, derivatives Capasso ea. 2020 JCF; Nguyen ea. 2022 RFS,
Ilhan ea. 2021 RFS

Results: mixed sign of impacts, magnitude only up 20-30 bp

Carbon risk could be only partially priced by markets

“Lack of consensus among institutional investors around climate
change” (Bolton and Kacperczyk 2021 JFE)

Stroebel and Wurgler (2021 JFE): consistent view among financial
economists and professionals that climate risks are underestimated
and policy risk is the dominant one in the near term

Uncertainty about mitigation scenarios (Barnett ea. 2022 RFS).
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Related work: corporate finance

Related works in financial valuation

Similar to financial valuation models, we relate the adjustment in
PD to future cash flows:

Established literature on the relation between the firms’ future
economic performance and the value of firms’ securities (Brennan
and Schwartz 1984, Campbell and Shiller 1988)
Recently also applied to sustainable and responsible investing (Crifo
et al. 2015, Renneboog et al. 2008, etc.)
Valuation varies depending on discount rate (Krueger et al. 2015)
and on the trajectory of future cash flows, e.g. oil prices scenarios
(Haushalter et al. 2002, Jin and Jorion 2006).
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Related work: climate change and credit risk

Relation to structural models of credit risk

Similar to structural models of credit risk, default is modelled as the
result of a process internal to the firm (Merton, 1974):

Agliardi and Agliardi 2021: structural model (Merton + jumps) for
bond risk with jump distribution linked to green/non-green bond
Le Guenedal and Tankov 2022: structural model of defaultable
bonds, probability of a scenario inferred from carbon price shocks

Differences:
climate scenario-contingent valuation
simplified mathematical treatment, more detailed economic
structure for financial valuation: discounted cash flows
focus on dynamic evolution of firms’ energy tech
internalization of investors’ expectations in credit risk adjustments
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The model: information structure

Known: set of possible climate policy scenarios (NGFS)

Known: conditioned to a scenario, trajectory of output for each
energy tech.; probability distribution of profitability shocks

Unknown: probability of occurrence of each scenario
Expectations and beliefs about which scenario will occur may
change upon arrival of new info (policy, tech, market news)

Frictions:
1 Markets’ changes of expectations on scenarios not fully anticipated
2 Once a change of expectations occurs, firms face some net costs in

selling off excess capital stock (carbon stranded assets)
3 Insurance market to cover ex-ante for these losses is incomplete
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The model: production and capital stock

Economy with discrete time indexed by t ∈ N
Economic activities classified into Climate Policy Relevant Sectors
(CPRS, Battiston ea. 2017; 2022) indexed by s = 1, · · · ,S
Firms maximise profits, with Cobb-Douglas production function
gs(K̃ , L̃) = µsK̃

αs L̃1−αs , with K̃ , L̃ real capital and labour

Production function in sector s is linear in the capital level that
maximises firm’s profits1, with productivity of capital λs := 1/αs :

fs(K ) = λsK

Capital in sector s depreciates at rate δs ∈ [0, 1].

1
Under assumption that labor supply and wages are fixed.
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The model: climate policy uncertainty

Set of scenarios: Business-as-usual scenario B and a set of climate
policy scenarios P = {P1, · · · ,Pn}.
Each scenario P characterized by target temperature and by
trajectories of economic output across sectors s and over time t:

{XP
s,t}s,t with s = 1, · · · S , t = 0, · · · , tmax

Possible switching of market expectations from B to P

2 sources of uncertainty:
Knightian uncertainty about the scenario
Probabilistic uncertainty about econ and financial dynamics in a
given scenario (captured by distribution of the profit rate): driver of
credit risk within a scenario.
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Transition risk exposure: Climate Policy Relevant Sectors

Climate Policy Relevant Sectors (CPRS)

Sectors s are characterised by different levels of transition risk and
classified into CPRS (NACE 4-digit) (Battiston ea. 2017)

Forward-looking transition risk classification of individual activities
and assets, widely used in the literature and finance practice.

CPRS consider:
Energy tech composition of revenues
Business model and input substitutability (fossil fuel)
Contribution to GHG emissions (Scope 1,2,3)
Relevance for climate policy implementation (costs sensitivity, e.g.
to EU carbon leakage directive 2003/87/EC)
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Examples of CPRS application by financial supervisors

Figure: Application of CPRS at the Monetary
Authority of Singapore (MAS), Financial Stability
Review. Source: MAS, 2023
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Real dynamics of the firm in the B scenario

Firm characterized by its market share m in each s and tech (ms)s∈S

Capital stock needed to fulfill production trajectory under B is
determined by market share and production function:

KB
s,t :=

ms

λs
XB
s,t

In turn, this determines the required investment trajectory2:

IBs,t+1 = KB
s,t+1 − (1− δs)K

B
s,t , IBt+1 =

∑
s

IBs,t+1

Finally, profit depends on output with random shocks:

ΠB
t :=

∑
s

uBs,tmsX
B
s,t

where uBs,t is random profit rate.

2
We assume that the capital accumulation trajectory induces a non-negative investment pattern in B.
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Financial dynamics of the firm in the B scenario

Financial structure of the firm constrained by the need to finance
required investment in the scenario

Initial capital stock of the firm financed by equity and debt:

KB
0 := IB0 = EB

0 + DB
0

New investments are financed by new debt and retained earnings

Given dividend factor d and interest rate r (determined at t = 0),
the debt dynamics is3:

DB
t := (1 + r)DB

t−1 + (IBt − (1− d)ΠB
t ) (1)

Expanding Eq.(1), debt at maturity T is:

DB
T = (1+r)TDB

0 +
T−1∑
t=1

(1+r)T−t IBt −
T∑
t=1

(1+r)T−t(1−d)ΠB
t (2)

3
We assume initial debt can be extended through a credit line, consistently with empirical evidence on the

structure of corporate lending deals.
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Changes in expectations (B to P) and stranded assets

At t = 0 markets’ expectations switch from B to P

It takes time delay τ for firms to reduce their fixed capital trajectory
when expectations change leading to lower demand for fossil fuels

Stranding coefficient γP : ratio future value of investments in P vs B

γP :=
I
P

T

I
B

T

=

∑T
t=0(1 + r)T IPt∑T

t=0(1 + r)T−t IBt
. (3)

Stranding: resulting capital stock KP
s,t differs from efficient

trajectory K∗P
s,t (if the firm anticipated P and adjusted immediately)

Stranding depends on: adjustment time τ , depreciation rate δ,
difference btw production levels in B and P. In the simplest case4:

KP
s,t :=

 KB
s,t if t ≤ τ

max{K∗P
s,t , KP

s,τ · (1− δs)
t−τ} if t > τ .

4
The formula is valid in the case illustrated in the plot. More general case treated in the paper.
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Changes in expectations (B to P) and stranded assets
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Figure: Capital trajectories in B (black), P (green), stranding (pink). Two frictions
(capital lock in in infrastructures, fossil fuel needs) prevent the firm to anticipate

stranding (i.e. follow green). Relative stranded assets at t:
KP
t −KB

t

KB
t
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Bond valuation adjustment

Value BC
0 of a zero-coupon bond with face value 1 and maturity T

in scenario C ∈ C is given by

BC
0 = (1 + rC0 )−T

[
(1− PDC ) + PDCRC

]
, (4)

where PDC is the default probability, RC is the recovery ratio in C
under the (risk-neutral) probability Q.

Valuation adjustment ∆BP
0 conditional to changes in markets’

expectations (B to P) defined as relative change in valuation5:

∆BP
0 =

BP
0 − BB

0

BB
0

=
−(1 + rP0 )

−TPDPLGDP + (1 + rB0 )
−TPDBLGDB

(1 + rP0 )
−T (1− PDBLGDB)

(5)

5
Dependency on financial parameters (E0, r, d) omitted to simplify notations.
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Default probability and credit risk

Proposition. Default probability and key parameters

1 The risk-neutral default probability in scenario C = {B, P} is
function PDC (E0, r , d ,XC ,XB , λ, δ, γ) of: initial equity E0, interest
rate r , dividend rate d , output trajectories XC , XB in scenarios B,
P, productivity λ, depreciation rate δ and delay parameter τ .

PDC decreases with E0 and increases with d
PDC increases with r for λs large enough

2 If XP
t,s ≤ XB

t,s∀t, s (strictly ∃t, s) and stranding coefficient γ close
enough to 1, the default threshold in P is higher than in B:

θP > θB .

Implications for credit risk

Upon changes in markets’ expectations from B to P, PD increases

PDP(E0, r , d ,X
P ,XB , λ, δ, γ) > PDB(E0, r , d ,X

B , λ, δ).

if production is lower and distrib. of profitability rates vP ,vB are close enough.
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Sensitivity analysis

Dependence of key quantities

on change in the cumulative

compounded output

∆X̄P
T = − X̄P

T −X̄B
T

X̄B
T

(loss in

cumulative output: B to P)

Top left panel: yearly PD.

Top right: LGD. Bottom left:

bond value BP
0 . Bottom

right: bond valuation

adjustment ∆BBP
0 .
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Output and bond value across scenarios and stranding
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For single tech firm (electricity/coal revenues):

Left: output in Net Zero 2050 always smaller than in Below 2C (the
latter being less stringent on emission reduction)

Right: bond value in Net Zero 2050 is also lower than in Below 2C.
As expected, stronger effects for higher value of stranding.
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Dynamic energy technology and output evolution
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Figure: Evolution of output share from renewable (green) and non-renewable
technologies (brown), for two example companies, RWE AG (left) and Enel SpA
(right), under scenario Below 2C, REMIND-MagPIE 2.1-4.2.
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Valuation adjustment of individual bonds

Figure: Histogram of bonds’ valuation adjustment across firms conditional to change
in markets’ expectations from Current Policy to Net Zero 2050, REMIND-MAgPIE
3.0-4-4. The vertical black dashed line represents the average adjustment across firms
which also corresponds to the average adjustment for a portfolio allocation with
uniformly distributed weights (i.e., a “one-over-N” investment allocation).
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Example portfolio (w/technology evolution)

Investment universe: 198 global listed companies in utility sector
with info on power technology capacity in 2020

We build 5 portfolios based on firms’ greeness:
−1 ≤ greenness = CRen − CFoss ≤ 1 :

Top10Green: “one-over-n” allocation into top 10% of firms by
greenness
Top50Green: “one-over-n” allocation into top 50% of firms by
greenness
All: “one-over-n” allocation into all firms
Bottom50Green: “one-over-n” allocation into bottom 50% of
firms by greenness
Bottom10Green: “one-over-n” allocation into bottom 10% of
firms by greenness.
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Valuation adjustment of bond portfolios across scenarios
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Figure: Valuation adjustments of bond portfolios across scenarios. Market
expectations: change from Current Policy to each scenario, REMIND-MAgPIE.
Portfolio allocations: Top10Green (green star); Top50Green (green square); All (blue
circle); Bottom50Green (red square); Bottom10Green (red star).
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Conclusion

CLIMACRED model for climate scenario-contingent valuation

Closed-form expression for valuation adjustment under changes in
markets’ expectations

Potential carbon risk is large: up to 80% loss in value for firms
active only in fossil fuel vs. lower for firms with diversified tech

Adjustment driven by (i) sector output trajectory, (ii) firm-level
tech. mix, (iii) firm-level stranding

Empirical applications to climate stress-testing (e.g. MAS), NGFS
short term scenarios project, DG REFORM ESG UPTAKE project.
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APPENDIX
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CPRS mapping

Figure: Source: Battiston ea. 2017

I. Monasterolo CLIMACRED model 29/35



International Conference on Computational Finance 2024

Probability of default in policy scenario B

Proposition on default probability in B

The default condition in scenario B, is such that the average shock on
profitability vB is ≤ threshold θ, function of: initial equity E0, interest rate r ,
dividend rate d and output trajectory {XB

s,t}s,t , as:

vB ≤ θ(E0, r , d , {XB
s,t}s,t) =

I
B
T − AB

T − ET

(1− d)X
B
T

.

where:
θ is decreasing in E0 and d , ceteris paribus,
ET := (1 + r)TE0 future value of initial equity at growth rate r ,

X
B
T :=

∑T
t=1(1 + r)T−t ∑S

s=1 msX
B
s,t future value of output,

I
B
T :=

∑T−1
t=0 (1 + r)T−t IBt future value of investment,

vB :=

∑T
t=1(1 + r)T−t ∑S

s=1 u
B,s
t msX

B
s,t∑T

t=1(1 + r)T−t
∑S

s=1 msXB
s,t

random variable denoting

the average profit rate across sectors and time periods.
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Probability of default in the policy scenario P

Proposition on default probability in P

The default condition in scenario P, is s.t. the average shock on profitability
vP is ≤ threshold θ, function of: initial equity E0, interest rate r , dividend rate
d , stranding coefficient γ, and output trajectory {XP

s,t}s,t , as:

vP ≤ θ(E0, r , d , γ, {XP
s,t}s,t) =

γP I
B
T − AP

T − ET

(1− d)X
P
T

.

where:
θ is decreasing in E0 and d , and increasing in γ, ceteris paribus,
ET := (1 + r)TE0 future value of initial equity at growth rate r ,

X
P
T :=

∑T
t=1(1 + r)T−t ∑S

s=1 msX
P
s,t future value of output,

I
P
T :=

∑T−1
t=0 (1 + r)T−t IPt future value of investment,

γ =
I
P
T

I
B
T

non decreasing in τ ,

vP : defined analogously to vB
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Loss Given Default (LGD)

If no default: zero-coupon yields a payment corresponding to the
principal of debt plus interests. If default: the firm can pay the
value of its assets (lower than face value of debt)

In any scenario C ∈ C = {B,P1, · · · ,Pn}, endogenous recovery rate
RC is the expected value of bond repayment conditional to default

Loss Given Default (LGD) in C is LGDC = 1− RC

We have:

LGDC = 1− RC = 1− EQ

[
κAC

T

DC
T

∣∣∣∣ AC
T < DC

T

]
,

where κ: exogenous coefficient capturing bankruptcy costs.
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Evolution of output by technology: RWE and ENEL
examples
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Figure: Evolution of output by technology for RWE AG (left) and Enel
SpA (right) computed with scenarios from REMIND-MagPIE 3.0-4.4 Net
Zero 2050. Dashed lines: output by technology (color code in legend).
Black solid line: total output, 2020=1. Legend: % by technology at 2020.
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Evolution of output across scenarios
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Figure: Comparison across climate policy scenarios of total firms’ size
estimated with model REMIND-MagPIE 3.0-4.4 for RWE AG (left) and
ENEL SpA (right). The dashed lines represent climate policy scenarios,
the black solid line represents the Business as Usual (BAU) scenario.
Dashed lines deviate from the black solid line at the moment when the
transition occurs. For this reason, the line representing the Delayed
transition scenario overlaps with the BAU line until the year 2030.
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Figure: Comparison of the level of greenness of utility firm with respect
to equity (left) and bond (right) adjustments computed with scenarios
from REMIND-MagPIE 3.0-4.4 Net Zero 2050. Firms’ greenness is
defined as the aggregate initial tech share from renewable activities minus
the aggregate initial tech share from fossil based activities.
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