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Introduction: Parameter Uncertainty with Randomisation

Let the assets prices be modelled in an exponential way with as S(t) = S(0)eY (t)

with (Y (t))t the asset’s log-price process.
Let the coefficients of its SDE be functions of a random variable ϑ, called the
randomiser, and let us then denote it by Y ϑ(t):

dY ϑ(t) = b(t, ϑ) dt+ σ(t, ϑ) dW (t), Y ϑ(0) = 0
E.g.

dY ϑ(t) =

(
r − ϑ2

2

)
dt+ ϑdW (t), Y ϑ(0) = 0
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Deterministic switching and Randomisation

ϑ0 ∼ N (.05, .12), ϑ1 ∼ N (.8, .52), ϑ2 ∼ N (.05, .12), ϑ1 ∼ N (.8, .52)
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Deterministic switching and Randomisation

This process is an example of a process we call a composite process Xϑ(t) with
deterministic switches and randomised volatility coefficients,

dXϑ(t) =

3∑
j=0

1t∈[τj ,τj+1)

((
r −

ϑ2j
2

)
dt+ ϑj dW̃ (t)

)
, (1)

with r = 0.05 the short interest rates,
for some driving Brownian motion W̃ (t),
a random vector ϑ = (ϑ0, ϑ1, ϑ2, ϑ3) measurable at the initial time.
and deterministic switches at τ1 = 0.5, τ2 = 1, τ3 = 1.5.

This process alternates between two types of regimes characterised by low and
high volatility, expressed through randomisers ϑj , 0 ≤ j ≤ 3.
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Mixture models, Randomisation, local volatility models

• Mixture models are nicely interpretable, leading to good results for implied
volatility for European type options.

• For path-dependent problems, one should take into account nested
expectation issues, see Piterbarg (2003). E.g. the nested expectation
problem of a compound put option with two exercise dates T1 and T2 at
strikes K1 and K2.

• Brigo and Mercurio (2000) present a nice link with local volatility models.

• Local volatility models have proven their efficiency, and are in a complete
market setting.

• In general, the local volatility functions are difficult to estimate.

• See also Grzelak (2022a,b) for an interesting study of randomisation with
several applications and a deeper study of this link with local volatility
models.
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In this talk

• We study models which allow for uncertainty in the parametrisation of the
stochastic dynamics and we take into account possible different behaviours
across various times or regimes.

• We start by constructing a model with random parameters, where the
switching between regimes can be dictated either deterministically or
stochastically.

• We further present the equivalent modelling through local volatility models.

• We derive characteristic functions, providing a versatile tool with
wide-ranging applications.

• Numerical section: option pricing. The impact of parameter uncertainty is
analysed in a two-regime model, where the asset process switches between
periods of high and low volatility.

• Jump dynamics are included in the paper but are here omitted for clarity.

• This talk is based upon:
Wolf, F.L., Deelstra, G., Grzelak, L.A. (2024), Consistent asset modelling
with random coefficients and switches between regimes, Mathematics and
Computers in Simulation.
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First model: Deterministic Switching

Let bj(t, z) and σj(t, z) be real-valued functions which are finite for all t ≥ 0 and
bounded for all z ∈ R.

Given a real-valued random variable ϑj , we introduce the randomised component
process Y ϑj (t), t ≥ 0

Y ϑj (t) :=

∫ t

0

bj(u, ϑj) du+

∫ t

0

σj(u, ϑj) dWj(u). (2)

For any realisation θj = ϑj(ω
∗), we introduce the conditional component process

Y θj (t), t ≥ 0 by

Y θj (t) :=

∫ t

0

bj(u, θj) du+

∫ t

0

σj(u, θj) dWj(u). (3)
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Composite process

Consider a random vector ϑ = (ϑ0, . . . , ϑM ) for some M ∈ N and the associated
family of randomised component processes {Y ϑ0 , . . . , Y ϑM} with dynamics

dY ϑj (t) = bj(t, ϑj) dt+ σj(t, ϑj) dWj(t), Y ϑj (0) = 0, (4)

with all Brownian motions Wj(t) independent. Let 0 = τ0 < τ1 < · · · < τM be a
sequence of switching times that define a composite process

Xϑ(t) := x0 +

M∑
j=0

Y ϑj (sj(t)), (5)

with time-shifts

sj(t) :=


0, t < τj ,

t− τj , τj ≤ t < τj+1,

τj+1 − τj , τj+1 ≤ t.
(6)
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The conditional composite process

The SDE of the conditional composite process can be written as

dXθ(t) = β(t;θ) dt+ γ(t;θ) dW̃ (t), Xθ(0) = x0, (7)

with coefficients

β(t;θ) :=

M∑
j=0

bj(sj(t), θj)1t∈[τj ,τj+1), (8)

γ(t;θ) :=

M∑
j=0

σj(sj(t), θj)1t∈[τj ,τj+1). (9)

The parameters θ = ϑ(ω) = (ϑ0(ω), . . . , ϑM (ω)) are realisations of the
randomisers.
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Characteristic function of the processes

If the randomisers are independent, we observe the characteristic function of
Xϑ(t)

ϕ(u;Xϑ(t)) = eiux0

M∏
j=0

ϕ
(
u;Y ϑj (sj(t))

)
(10)

The characteristic function of Y ϑj (t) is given by

ϕ(u;Y ϑj (t)) := E
[
exp

(
iuY ϑj (t)

)]
=

∫
Dj

ϕ(u;Y
θj
j (t)) dFϑj

(θj)

=

∫
Dj

ϕ(u;Y
θj
j (t))fϑj (θj) dθj ,

where Dj denotes the domain of the random variable ϑj , and Fϑj
, fϑj

its
cumulative distribution function and probability density function, respectively.
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Discretisation of characteristic function

For j ∈ {0, . . . ,M} let Nj ∈ N be the order of approximation. If the moments of
the randomiser ϑj are finite for every nj ≤ 2Nj , E[ϑ

nj

j ] <∞, then the

characteristic function ϕ(u;Y ϑj (t)) is represented by the discretisation

ϕ(u;Y ϑj (t)) =

∫
Dj

fϑj
(θj)ϕ(u;Y

θj
j (t)) dθj =

Nj∑
nj=1

wnj
ϕ(u;Y

θnj

j (t)) + εNj
(t, u).

Here, the weights/points (wnj , θnj )
Nj

nj=1 are the Gauss-quadrature pairs

associated with integration against the weight function fϑj
(θj), and εNj

(t, u) is
the quadrature approximation error, which is bounded by

εNj
(t, u) ≤ sup

ξ∈Dj

1

(2N)!

∂2N

∂θ2N
ϕ(u;Y

θj
j (t))

∣∣∣∣
θ=ξ

.

The computation of the weight/point pairs with the Golub-Welsch algorithm only
requires knowledge about the moments of the randomisers, see e.g. Grzelak
(2022a,b) or Grzelak et al. (2019).
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Local volatility formulation of deterministic switching

We establish a local volatility model which behaves like the quadrature
approximation of Xϑ(t): (Denote θ|n| = (θn0 , . . . , θnM

))

dX̄(t)= µ̄
(
t, X̄(t)

)
dt+ σ̄

(
t, X̄(t)

)
dW̄ (t), X̄(0) = x0, (11)

µ̄(t, x) =

N0,...,NM∑
n0,...,nM=1

( M∏
j=0

wnj

)
β(t;θ|n|)f

(
x;Xθ|n|(t)

)
N0,...,NM∑

n0,...,nM=1

( M∏
j=0

wnj

)
f
(
x;Xθ|n|(t)

) , (12)

σ̄2(t, x) =

N0,...,NM∑
n0,...,nM=1

( M∏
j=0

wnj

)
γ2(t;θ|n|)f

(
x;Xθ|n|(t)

)
N0,...,NM∑

n0,...,nM=1

( M∏
j=0

wnj

)
f
(
x;Xθ|n|(t)

) . (13)

where f
(
x;Xθ|n|(t)

)
denotes the density of the process Xθ|n|(t).

Then the SDE (11) has a unique, strong solution X̄(t) with probability density function

f(x; X̄(t)) =

N0,...,NM∑
n0,...,nM=1

( M∏
j=0

wnj

)
f
(
x;Xθ|n|(t)

)
. (14)
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The proof of this result draws from an argument of identifying Fokker-Planck
equations, see e.g. Brigo and Mercurio (2000) and Grzelak (2022b).

The characteristic function of X̄(t) is given for every u ∈ R and t ≥ 0 by

ϕ(u; X̄(t)) = eiux0

M∏
j=0

Nj∑
nj=1

wnjϕ(u;Y
θnj

j (sj(t))) (15)

In summary, we have presented the local-volatility parametrisation under which its
characteristic function (and its pdf) mimics that of the randomised composite
process Xϑ(t).
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Figure: Sample paths of the randomised model with deterministic switching are
contrasted with its associated local volatility model X̄(t).
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Second model: Stochastic switching times

For some fixed number M ∈ N, let Y ϑj (t), j ∈ {0, . . . ,M} be randomised
component processes and let ζ = (ζ1, . . . , ζM ) be the independent, stochastic
sojourn times of these components. For every j ≥ 1, we define the stochastic
switching time by

πj :=

j∑
k=1

ζk, (16)

and set π0 := 0. We further define the time shifts sζj (t) by

sζj (t) :=


0, t < πj ,

t− πj , t ∈ [πj , πj+1),

ζj+1, t ≥ πj+1,

(17)

for j ∈ {0, . . . ,M − 1}. For the final component Y ϑM , the time shift is defined as

sζM (t) := (t− πM )1t≥πM
. Then, the randomised composite process with M

stochastic switching times is defined as

Xζ,ϑ(t) := x0 +

M∑
j=0

Y ϑj (sζj (t)). (18)

Griselda Deelstra (ULB) April 2, 2024 16 / 26



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
Trajectories of Xϑ(t) with stochastic switching

Xϑ(t; ω̄, ω∗1 , ω
∗
2)

τ (ω∗2)

Figure: Sample paths of the stochastic switching model with two switches. Every
trajectory uses the same underlying Brownian motion, all differences stem from the
random samples of parameter randomisers and sojourn times.
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Local volatility formulation of stochastic switching

Denote

ζM := (ζ1, . . . , ζM) |
M∑
`=1

ζ` < t. (19)

and remark that

f(u;Xζ,ϑ(t)) :=

∫
RM

+

f
(
u;Xz,ϑ(t)

)
dFζM (z)

=

∫
RM

+

fζM (z)f(u;Xz,ϑ(t)) dz, (20)

Denote the event Zj(t) := {ζj < t−∑j−1
`=0 ζ`}.

Remark that

f(x;Xζ,ϑ(t)) =

∫
RM

+

M∏
`=1

fζ`|Z`
(z`)f(x;Xz,ϑ(t)) dz
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Intuition about quadrature rule

Indeed, to factor the density, construct the successive conditioning

fMζ (z) = fζ1|{ζ1<t}(z1)fζ2|{ζ2<t−ζ1}(z2) · · · fζM |{ζM<t− ∑
j<M

ζj}(zM ). (21)

The first quadrature pair (v`1 , z`1), `1 = 1, . . . , L1 can be computed for
ζ1|{ζ1 < t} which is a right-truncated distribution.

For each point z`1 , we can compute dependent quadrature nodes
(v`1`2 , z

`1
`2

), `2 = 1, . . . , L2 from ζ2|{z`1 + ζ2 < t}.

Eventually, we reach all pairs (v`k,k<j`j
, z`k,k<j`j

), j = 1, . . .M .
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f(x;Xζ,ϑ(t)) =

∫
RM

+

M∏
`=1

fζ`|Z`
(z`)f(x;Xz,ϑ(t)) dz

≈
L1,...,LM∑
`1,...,`M=1

(
v`1v

`1
`2
· · · v`1,...,`M−1

`M

)
f

(
x;X

(z`1 ,z
`1
`2
,...,z

`1,...,`M−1
`M

),ϑ
(t)

)

=:

|L|∑
|`|=1

V|`|f(x;Xz|`|,ϑ(t)),

with quadrature weights V|`| =
∏
`j∈|`| v

`1,...,`j−1
`j

.

Each density f(x;Xz|`|,ϑ(t)) is the density of a randomised composite process
with M deterministic switches given by

τ|`| := (z`1 , z`1 + z`1`2 , . . . , z`1 + · · ·+ z
`1,...,`M−1

`M
). For every composite process

with deterministic switches, applying the quadrature approximation yields

f(x;Xζ,ϑ(t)) ≈
|L|∑
|`|=1

V|`|

N0,...,NM∑
n0,...,nM=1

( M∏
j=0

wnj

)
f(x;Xz|`|,θ|n|(t)).
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Local volatility and extension stochastic switching

• The quadrature discretisation is thus obtained for stochastic switching (with
M ∈ N).

• A local volatility formulation X̂(t) is obtained, namely with the solution of
this local-volatility type SDE exhibiting marginal distributions that align with
those of the quadrature discretisation of the randomized composite process.

• This can be extended to the case of fully stochastic switching, with the
number of regimes at t modeled by a random variable. We denote the related
fully stochastic switching local volatility formulation by X̃(t).
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Numerical Results

• Implied volatility (IV) surfaces obtained for European call options.

• We model the asset with the local volatility models corresponding to
deterministic switching, X̄(t), stochastic switching, X̂(t), and fully stochastic

switching X̃(t).

• We compute all option prices needed for implied volatility computations with
the COS-method of Fang and Oosterlee (2009), based on the obtained
characteristic functions.
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Figure: Implied volatility surface as the expiry T of the option decreases. The underlying
asset is modelled with one switch at time T/2 in the deterministic switch model X̄(t),
and one exponentially distributed switch such that E[ζ1] = T/2 in the stochastic

switching model X̂(t), both times the composite process switches from a regime with
‘calm’ randomiser ϑ0 ∼ N (0.15, 0.12) to one with an ‘excited’ randomiser
ϑ1 ∼ N (0.3, 1). We also consider the randomised model with no switch, where the
randomiser is that of the ‘excited’ randomizer regime throughout.

Griselda Deelstra (ULB) April 2, 2024 23 / 26



Strike

0.8
1.0

1.2
1.4

Parameter of

Uncertainty
0.0

0.5
1.0

Im
p

lie
d

vo
la

ti
lit

y

0.8
1.0

1.2
1.4 0.0

0.5
1.0

0.8
1.0

1.2
1.4 0.0

0.5
1.0

0.2

0.4

0.6

0.3 0.4 0.5 0.6

IV det. switch

0.3 0.4 0.5

IV stoch. switch

0.3 0.4

IV fully stoch. switch

Figure: We fix T = 1 and we consider the two-regime example with a ‘calm’ and an
‘excited’ randomiser distribution, resp. N (ν0, ξ

2
0) and N (ν1, ξ

2
1). The implied volatility

surfaces are obtained for a range of values for the ‘excited’ randomiser’s standard
deviation ξ1. Considered are the deterministic and stochastic switching models with one
switch each, as well as the fully stochastic switching model with a random number of
switches.
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Conclusions and further extensions

• All experiments show that randomisation and switching have an important
impact on the model’s implied volatility.

• In another approach, we drive the switching between randomised component
processes with a Markov chain, resulting in a Markov-modulated randomised
model, also called regime-switching randomised model.

• Characteristic function is obtained in all models, enabling many applications.
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Thank you for your attention!
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