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Execution probabilities

• The execution probability, or fill probability, refers to the likelihood that a limit order is
executed.

• This probability is affected by both intrinsic characteristics (price and quantity) of an
order, and by external factors (market conditions).

• The order book changes at a very high frequency.

• Accurately predicting the fill probability is a key component of effective algorithmic
trading.
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What do we do

• We construct a generic stochastic order flow model that incorporates state-dependent
arrival rates of limit and market orders, as well as cancellations.

• The state-dependent arrival and cancellation rates of orders are generally characterized
as functions of stylized factors.

• Although the model and the derived analytical formulas for the execution probabilities
are generic, we still provide explicit models that our model covers as examples.

• We conduct extensive numerical experiments using real order book data from the
foreign exchange spot market.
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Limit order book as a stochastic model

• The price grid is {1, ...,N}, where the upper boundary N is chosen to be sufficiently
large.

• The volume state of the order book is monitored through a continuous-time process

Q(t) ≡ (Q1(t), ...,QN(t))t≥0,

where |Qi (t)| is the number of outstanding limit orders at time t at price level i , with
1 ≤ i ≤ N.

• To make a distinction between the price levels where bid orders are outstanding and
price levels where sell orders are outstanding, the bid levels are denoted by negative
quantities.

4 / 19



Limit order book as a stochastic model

• The price grid is {1, ...,N}, where the upper boundary N is chosen to be sufficiently
large.

• The volume state of the order book is monitored through a continuous-time process

Q(t) ≡ (Q1(t), ...,QN(t))t≥0,

where |Qi (t)| is the number of outstanding limit orders at time t at price level i , with
1 ≤ i ≤ N.

• To make a distinction between the price levels where bid orders are outstanding and
price levels where sell orders are outstanding, the bid levels are denoted by negative
quantities.

4 / 19



Dynamics of state-dependent order flows

• The dynamics of the model can be captured by queueing systems, and fully described
by the following events:

• arrival of limit orders,

• arrival of market orders,

• cancellations of limit orders.

• By constructing the dynamics of the order book as a sequence of state-dependent
queueing systems, we can model the execution times as the first-passage times of the
corresponding birth-death and pure-death processes.

• We assume that all of the events mentioned above are modelled by independent
Poisson processes as often seen in the literature of modeling order flows.
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• We then assume that

• limit orders arrive with rate λQi (Xi ) at price level i ,

• market orders arrive at the best bid and best ask with rate µQi (Xi ) with
i = {pA, pB},

• and cancellation rate of limit orders at price level i to be ϕQi (Xi ),

where Xi is the vector of stylized factors that the arrival and cancellation rates of
orders depend on, and 1 ≤ i ≤ N.
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Schematic representation of the order book dynamics

0 · · · Q − 1 Q Q + 1 · · ·

µ... + ϕ... µQ−1 + ϕQ−1 µQ + ϕQ µQ+1 + ϕQ+1 µ... + ϕ...

λ0 λ... λQ−1 λQ λQ+1

Figure: At the best ask Q = QpA .

· · · Q − 1 Q Q + 1 · · · 0

µ... + ϕ... µQ−1 + ϕQ−1 µQ + ϕQ µQ+1 + ϕQ+1 µ... + ϕ...

λQ−1 λQ λQ+1 λ... λ0

Figure: At the best bid Q = QpB .
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Execution probability at the best quotes

• We now consider the fill probability of an order placed at the best ask or best bid
before the mid-price moves, given that it is never cancelled.

• The conditional probability that an order placed at the best quote is executed before
the mid-price moves is given by

P[ϵi < τ | QA(0) = qA0 ,QB(0) = qB0 , S(0) = s0,NCi ], (1)

where i ∈ {A,B} and ϵi denotes the first-passage time at which a pure-death process
reaches 0, given that it started in state qi0.

• The execution probability of Equation (1) is then equivalent to

P[ϵi < σj ∧ τA ∧ τB ] = P[ϵi − σj ∧ τA ∧ τB < 0]. (2)
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Computation formulas

Proposition (Lokin and Y. ’24)

Let f̂ s0σi
(s) denote the Laplace transform of the pdf of σi given s0, we have that for the Laplace transform of

the pdf of ϵi , denoted by ĝ s0
ϵi , is

ĝ s0
ϵi (s) =

qi0∏
k=1

µk(Xpi ) + ϕk(Xpi )

µk(Xpi ) + ϕk(Xpi ) + s
, (3)

where qi ≥ 0, i ∈ {A,B}, and s0 ≥ 1.
Let Λs0 =

∑s0−1
m=1 λ0(XpA−m) =

∑s0−1
m=1 λ0(XpB+m) again, then the fill probability given by Equation (1) can be

calculated by the inverse Laplace transform of

F̂ s0
ϵi ,σj

(s) =
1

s
ĝ s0
ϵi (s)

(
f̂ s0σj

(2Λs0 − s) +
2Λs0

2Λs0 − s
(1− f̂ s0σj

(2Λs0 − s))

)
, (4)

evaluating at 0 for i ̸= j ∈ {A,B}. Note that when s0 = 1, we have

F̂ 1
ϵi ,σj

(s) =
1

s
ĝ 1
ϵi (s)f̂

1
σj
(−s). (5)
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Execution probability at a price level deeper than the
best quotes

• We consider the case of a limit order posted at the price level deeper than the best
quote, pA + 1 and pB − 1, before the opposite best quote price moves.

• The intuition can be extended to price levels even deeper in the order book.

• For an order to be executed when it is not submitted at the best quote price, the best
quote price should move towards this order such that the order is at the new best
quote.

• We define τquotei to be the first time of a change in mid-price as a result of the best
quote price has moved to the price level of the concerned order,

τ quote
i ≡

{
inf{t ≥ 0 : pA(t) > pA(0)}, for i = A,
inf{t ≥ 0 : pB(t) < pB(0)}, for i = B.

(6)
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• Let τotheri be the first time of a change in mid-price as a result of a different event,

τ other
i ≡


inf

{
t ≥ 0 :

(
pA(t) < pA(0)

)
∧
(
pB(t) ̸= pB(0)

)}
, for i = A,

inf

{
t ≥ 0 :

(
pB(t) > pB(0)

)
∧
(
pA(t) ̸= pA(0)

)}
, for i = B.

(7)

• The probability that best quote price moves towards the price level where the
concerned order is at before the mid-price moves due to other events, is then given by

P[τ quote
i < τ other

i | QA(0) = qA
0 ,QB(0) = qB

0 , S(0) = s0]. (8)

• Let τ i be the time of the first change in mid-price after τquotei , i.e.

τ i ≡ inf{t ≥ τ quote
i : pM(t) ̸= pM(τ quote

i )} − τ quote
i .

• Given P[τquotei < τotheri ], the execution probability is

P[ϵi− < τ i | Wi−(τ
quote
i ) = qi−

τ
quote
i

,Qj(τ
quote
i ) = qj

τ
quote
i

,S(τ quote
i ) = s0 + 1,NCi−], (9)

where i ̸= j ∈ {A,B}.
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Computation formulas
Proposition (Lokin and Y. ’24)

The Laplace transform of the density function of the first-passage time σi of a birth-death process of Q̃i to 0
given s0 for i ∈ {A,B}, denoted by f̂ s0σi

(s), with s0 ≥ 1.

Again let Λs0 =
∑s0−1

m=1 λ0(XpA−m) =
∑s0−1

m=1 λ0(XpB+m), then Probability (8) can be calculated by the inverse
Laplace transform of

Ĝ s0
σi ,σj

(s) =
1

s
f̂ s0σi

(s)

(
f̂ s0σj

(2Λs0 − s) +
2Λs0

2Λs0 − s
(1− f̂ s0σj

(2Λs0 − s))

)
, (10)

evaluated at 0 for i ̸= j ∈ {A,B}. In particular, if s0 = 1, we have

Ĝ 1
σi ,σj

(s) =
1

s
f̂ 1σi

(s)f̂ 1σj
(−s). (11)

Remark
Once we have the explicit expressions for the transition rates λQi (Xpi ), µQi (Xpi ), µQi−(Xpi−), ϕQi (Xpi ), and

ϕQi−(Xpi−) for i = {A,B}, we can then obtain the corresponding formulas to calculate all the execution

probabilities according to the propositions.

12 / 19



Computation formulas
Proposition (Lokin and Y. ’24)

The Laplace transform of the density function of the first-passage time σi of a birth-death process of Q̃i to 0
given s0 for i ∈ {A,B}, denoted by f̂ s0σi

(s), with s0 ≥ 1.

Again let Λs0 =
∑s0−1

m=1 λ0(XpA−m) =
∑s0−1

m=1 λ0(XpB+m), then Probability (8) can be calculated by the inverse
Laplace transform of

Ĝ s0
σi ,σj

(s) =
1

s
f̂ s0σi

(s)

(
f̂ s0σj

(2Λs0 − s) +
2Λs0

2Λs0 − s
(1− f̂ s0σj

(2Λs0 − s))

)
, (10)

evaluated at 0 for i ̸= j ∈ {A,B}. In particular, if s0 = 1, we have
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Explicit stochastic intensity model

Based on the assumptions in Cont et al. ’10 and our empirical analysis, we have the following
explicit arrival, cancellation rates of limit and market orders at time tj in the numerical
experiments:

λQi
(Xi ) = λ(pA(tj)− i ,S(tj)) for i < pA(tj),

λQi
(Xi ) = λ(i − pB(tj),S(tj)) for i > pB(tj),

µQi
(Xi ) = µ(S(tj)) for i = pA(tj) or i = pB(tj),

ϕQi
(Xi ) = θ(i − pB(tj),S(tj))|Qi (tj)| for i ≥ pA(tj),

ϕQi
(Xi ) = θ(pA(tj)− i , S(tj))|Qi (tj)| for i ≤ pB(tj),

where λ, θ : N× N → R+ are functions of the price and spread, and µ : N → R+ is a
function of the spread.
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Empirical limit order executions
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Figure: Distribution of executed limit orders based on their distance in ticks from the best quote at
the time of execution.
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Figure: Distribution of executed limit orders based on their distance in ticks from the best quote at
the time of submission.
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Empirical intensity rates
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Figure: Arrival rates per second for market orders for each spread size between one and five ticks.
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Probability of an increase in mid-price

Empirical Probability Model Probability

qA qA

qB 1 2 3 4 5 1 2 3 4 5

1 50.3% 33.0% 22.9% 27.1% 22.4% 50.0% 34.7% 27.1% 22.6% 19.6%
2 70.5% 56.6% - - - 65.3% 50.0% 41.1% 35.3% 31.1%

S = 1 3 78.7% - - - - 72.9% 58.9% 50.0% 43.8% 39.2%
4 78.2% - - - - 77.4% 64.7% 56.2% 50.0% 45.3%
5 81.4% - - - - 80.5% 68.9% 60.8% 54.8% 50.0%

1 49.6% 38.5% 32.2% 25.2% 22.0% 50.0% 36.8% 30.9% 27.6% 25.6%
2 58.1% 48.5% 52.3% 45.5% 27.5% 63.3% 50.0% 43.2% 39.1% 36.4%

S = 2 3 70.1% 49.9% - - - 69.2% 56.8% 50.0% 45.7% 42.7%
4 75.1% 43.9% - - - 72.4% 60.9% 54.4% 50.0% 47.0%
5 81.6% - - - - 74.5% 63.7% 57.3% 53.1% 50.0%
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Execution probability at the best quotes

Empirical Probability Model Probability

qA qA

qB 1 2 3 4 5 1 2 3 4 5

1 2.0% 5.3% 7.1% 13.4% - 3.0% 3.9% 4.6% 5.1% 5.5%
2 0.6% 0.0% - - - 1.9% 2.7% 3.2% 3.7% 4.0%

S = 1 3 0.3% - - - - 1.5% 2.2% 2.6% 3.0% 3.3%
4 0.0% - - - - 1.2% 1.8% 2.2% 2.6% 2.9%
5 0.0% - - - - 0.9% 1.5% 1.9% 2.2% 2.5%

1 1.3% 2.5% 4.1% 5.9% 5.9% 1.5% 1.8% 2.0% 2.1% 2.2%
2 0.3% 0.1% 0.0% - - 1.0% 1.2% 1.3% 1.4% 1.5%

S = 2 3 0.3% 1.6% - - - 0.7% 0.9% 1.0% 1.1% 1.2%
4 0.2% - - - - 0.6% 0.8% 0.9% 1.0% 1.0%
5 0.0% 0.0% 0.0% - - 0.5% 0.7% 0.8% 0.8% 0.9%
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Execution probability at a price deeper

Empirical Probability Model Probability

qA qA

qB 1 2 3 4 5 1 2 3 4 5

qB− = 1

1 0.19% 0.27% 0.68% 2.16% - 0.75% 0.97% 1.09% 1.16% 1.21%
2 0.23% 0.25% 0.39% 0.67% - 0.53% 0.75% 0.88% 0.97% 1.03%
3 0.11% 0.69% - - - 0.42% 0.62% 0.75% 0.84% 0.91%
4 0.12% - - - - 0.35% 0.54% 0.66% 0.75% 0.82%

qB− = 2

1 0.06% 0.44% - - - 0.63% 0.81% 0.91% 0.96% 1.00%
2 0.12% 0.37% 0.00% - - 0.47% 0.67% 0.78% 0.86% 0.91%
3 0.12% 0.00% - - - 0.38% 0.57% 0.69% 0.77% 0.83%
4 0.00% - - - - 0.32% 0.50% 0.61% 0.70% 0.76%
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Thank you for listening!

• F. Lokin and F. Yu. Fill probabilities in a limit order book with state-dependent
stochastic order flows. https://arxiv.org/abs/2403.02572, 2024.


