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Introduction

▶ Option price (panel) data contain valuable information about investor
expectations on future asset prices;

▶ From option prices, one can obtain information on the (risk-neutral)
density, moments, volatility, etc;

▶ This rich information, however, is often challenging to extract
▶ the non-linear nature of option prices and various sources of uncertainty add

complexity and computational costs to the analysis
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RND from options

▶ Observed option prices convert to
BSIV

▶ BSIV ‘curve-fitting’ (parametric or
non-parametric)

▶ Convert the curve back to options

▶ Obtain the RND by calculating
the second-order derivative of a
(converted) ‘curve’.

↓
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In this paper

▶ We propose a unified non-parametric estimation procedure for the RND,
option prices and option sensitivities (option delta);

▶ Our approach leverages the Fourier-based cosine technique, the COS
method, proposed by Fang and Oosterlee (2008), in a model-free way by
implying information from observed option contracts.

▶ The proposed estimation method is fully non-parametric and does not
require any optimization routines, offering a flexible and
computationally appealing alternative to traditional techniques.
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The COS method

▶ The COS method of Fang and Oosterlee (2008) is the Fourier-based
based method for evaluation of option prices;

▶ Fourier cosine series expansion of the density function f (y) on an
interval [a, b] ⊂ R:

f (y) =
2

b − a

∞

∑′

m=0
Am cos (umy − uma) , (1)

with um := mπ
b−a and the cosine coefficients Am:

Am =
∫ b

a
cos(umy − uma) f (y)dy. (2)
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The COS method

▶ Fang and Oosterlee (2008): the cosine coefficients Am can be approximated
via the characteristic function (CF), ϕ(u), of y:

Am = ℜ
{∫ b

a
eium(y−a) f (y)dy

}
≈ ℜ

{
ϕ(um)e−iuma

}
=: Ãm.

▶ Define the cosine series coefficients of the payoff function v(y, T) as

Hm :=
2

b − a

∫ b

a
v(y, T) cos(umy − uma)dy.

▶ deterministic function of the payoff function, pre-computed for put and call.
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The COS method

▶ Consider a European option with a payoff v(y, T) maturing at time T;

▶ Its price under the risk-neutral measure Q is given by the COS as:

v0 = e−rTEQ[v(y, T)]
(1)
≈ e−rT

∫ b

a
v(y, T) f (y)dy

(2)
≈ e−rT

∞

∑′

m=0
ÃmHm

(3)
≈ e−rT

N−1

∑′

m=0
Ãm Hm,

where by
(i)
≈ we denote the subsequent numerical approximation.

▶ Importantly, it requires a parametric CF, which is unknown a priory;

▶ However, we observe option prices in the market!
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Information in options

▶ Breeden and Litzenberger (1978): call (and put) option on underlying asset
price ST with strike K and time to expiration T:

C0(K) = e−rTEQ[max(ST − K, 0)] = e−rT
∫ ∞

K
(x − K) fS(x)dx,

implies risk-neutral density

fS(x) = erTC′′
0 (x) = erT ∂2C0(K)

∂K2

∣∣∣∣
K=x

. (3)
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Payoff spanning

▶ Consider a general payoff function v(ST) for a European-style option
▶ Value v0 at time t = 0 for this option is

v0 = e−rTEQ[v(ST)] =
∫ ∞

0
v(x) fS(x)dx.

▶ Carr & Madan (2001): replicating portfolio of this contract:

v0 = e−rTv(F0) +
∫ ∞

0
v′′(K)O0(K)dK

with OTM options O0(K) = min{C0(K), P0(K)} and futures price F0.
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Option-implied cosine coefficients

Transformation y = log ST
x , a = log α

x and b = log β
x with x > 0, and notice

Am =
∫ b

a
cos (umy − uma) f (y)dy (4)

=
∫ β

α
cos

(
um log

ST
α

)
fS(ST)dST = EQ

[
cos

(
um log

ST
α

)
1{α≤ST≤β}︸ ︷︷ ︸

=:v(ST)

]
,

which can be spanned as a portfolio of options with v(ST):

e−rT Am = e−rT cos
(

um log
F
α

)
+

∫ β

α
ψm(K)O0(K)dK︸ ︷︷ ︸

=:Dm

+ (−1)mC′
K(β)− P′

K(α)︸ ︷︷ ︸
=:bm

.
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Option-implied cosine coefficients

▶ C′
K(β) and P′

K(α) are call and put price derivatives w.r.t. strike K and
ψm(x) := v′′(x)

▶ The option-implied cosine coefficients Dm are exact and completely
model-free;

▶ But, require a continuum of options with strikes K ∈ [α, β];

▶ Dm can be estimated by D̂m given n observed OTM option prices O(Ki),
i = 1, . . . , n with α := K1 < ... < Kn =: β.

▶ In fact, D̂m
P−→ Dm as n → ∞.
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Option-implied call price

The call price C0(x) with the strike price x: α ≤ x ≤ β can be decomposed as

C0(x) = C[α,β]
0 (x) + C(β,∞)

0 (x) = C[α,β]
0 (x) + (x − β)C′

K(β) + C0(β),

▶ C[α,β]
0 is the value of the call on the interval [α, β];

▶ ⇒ can be evaluated exactly using the COS expansion:

C0(x) =
∞

∑′

m=0
DmHm(x) + C0(β) + Zc(x)C′

K(β) + Zp(x)P′
K(α). (5)

▶ Zc(x) and Zp(x) some deterministic functions of x;
▶ (5) is exact but circular ⇒ useful for interpolation/approximation;
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In practice

1. Given a finite number of option prices, estimate D̂m, m = 1, . . . , N;

2. estimate Ĉ(x) := ∑′N
m=0 D̂m Hm(x) for x ∈ [α, β];

3. regress C(Ki)− Ĉ(Ki)− C(β) on Z(Ki) := (1, Zc(Ki), Zp(Ki)) to get

θ̂ :=
(̂̄θ, Ĉ′

K(β), P̂′
K(β)

)′
;

4. obtain Ĉ(x) := Ĉ(x) + C(β) + Z(x)θ̂ for any strike x ∈ [α, β].
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Option-implied call price

▶ The call price estimator Ĉ(x) is model-free and eliminates
approximation errors (1) and (2);

▶ In contrast to the COS method, the choice of the interval [a, b] is
data-driven;

▶ Ĉ(x) is a portfolio of all observed put/call options
=⇒ can be used for smoothed interpolation
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Portfolio weights for ATM call option

The illustration is based on the simulated Black-Scholes model with strike prices between
85% and 110% of the spot price with equidistant increments and 201 option contracts.
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Assumptions

1. The smallest and largest strike prices are fixed at α = K1 and β = Kn,
and the strike prices between them are equidistant, i.e.
∆K := Ki − Ki−1 = β−α

n−1 , i = 2, . . . , n.

2. Option prices are observed with an additive error term:

O(Ki) = O0(Ki) + εi, i = 1, . . . , n,

where εi are mean-zero, conditionally independent, and heteroskedastic
across strikes.

3. The RND of future prices fS(s) ∈ Cp([α, β]) with p > 1.
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Option-implied call

Proposition
Under Assumptions 1–3, the computationally feasible option-implied call price
estimator Ĉ(x) with a strike price x ∈ [α, β] is such that as n → ∞ and N → ∞
with Nn−1/2 → 0

Ĉ(x)− C0(x)
σc(x)

d−→ N (0, 1) ,

with a closed-form expression for the variance σ2
c (x).
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Risk-Neutral Density

Proposition
Under Assumptions 1–3, the computationally feasible option-implied RND
estimator of the future log price y = log ST :

f̂ (y) = ν f

N

∑′

m=0

(
D̂m + (−1)mĈ′

K(β)− P̂′
K(α)

)
cos (umy − um log α) (6)

with ν f := 2erT log (α/β) and is such that for any fixed y as n → ∞ and N → ∞
with Nn−1/6 → 0

f̂ (y)− f (y)
ν f σf (y)

d−→ N (0, 1) ,

where σ2
f (y) is the variance term.
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Option-implied delta

The implied, model-free delta for a European call can also be obtained via a
portfolio of options:

∆(x) =
∂C0(x)

∂S0
= − 1

S0

∞

∑
m=1

umBmHm(x) +
1
S0

(
C0(β)− βC′

K(β)
)

.

▶ Coefficients Bm := e−rTEQ
[
sin

(
um log ST

α

)
1{α≤ST≤β}

]
are spanned in a

similar way as Am;
▶ The non-parametric estimator for the option’s Delta can also be derived

similarly:

∆̂(x) = − 1
S0

N

∑
m=1

um B̂m Hm(x) +
1
S0

(
C(β)− βĈ′

K(β)
)

; (7)

▶ An analogous asymptotic result holds for the delta estimator ∆̂(x).
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iCOS

▶ iCOS combines the COS machinery with the option-implied information;

▶ non-parametric and based on portfolio replication argument
▶ does not do ‘curve-fitting’ and does not use Breeden and Litzenberger (1978);
▶ (almost) optimization-free;

▶ uses all available information
▶ kernel smoothing and local regression models use local information controlled by

bandwidth parameter;

▶ the simulation results indicate good finite performance more ;

▶ choice of N can be adaptive more .
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S&P 500 options

▶ SPX options traded on April 1, 2021 with maturity T = 29 days;

▶ Focus on option with strikes from interval [α, β] = [2950, 4400], while
forward F0 = $4008.5;

▶ Use mid-quote option prices as the input for the estimation procedure;

▶ The number of options n = 239 and Fourier terms N = 23.
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S&P 500 options

Figure 1: SPX options fit displayed on BSIV space
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S&P 500 options

Figure 2: Pricing errors for call estimates Ĉ(K)− C(K)
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S&P 500 options

Figure 3: Pricing errors for call estimates Ĉ(K)− C(K) relative to the half-spread
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S&P 500 options

Figure 4: RND and call delta for SPX options
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Amazon options

▶ Equity options on Amazon with a very short time-to-maturity of 1 day;

▶ Earning Announcement Day (EAD) of April 26, 2018 (before the
announcement);

▶ Atypical W-shaped implied volatility curve and bimodal RND
▶ much harder to capture with standard curve-fitting methods
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Amazon options

Figure 5: AMZN options fit displayed on BSIV space
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Amazon options

Figure 6: RND and call delta for AMZN options
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Conclusion

▶ Develop a new non-parametric estimation procedure for the RND,
option prices and deltas;

▶ Based on the COS method with the option-implied information;

▶ It is model-free, non-parametric and does not require optimization
procedures;

▶ Simulation results suggest good finite-sample performance;

▶ Application to SPX options and AMZN equity option on EAD.
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Simulation setup back

▶ The ‘double-jump’ stochastic volatility model of Duffie, Pan, and
Singleton (2000):

d log St = (r − 1
2 vt − µλ)dt +

√
vtdW1,t + JtdNt,

dvt = κ(v̄ − vt)dt + σ
√

vtdW2,t + Jv
t dNt.

▶ T = 30 days and the number of options n = 201;
▶ Add errors into the simulated option prices:

O(Ki) = O0(Ki) + 0.025 · ϵ, i = 1, . . . , n,

where ϵ is an i.i.d. standard normal random variable.



2 | 8

Simulated option prices

Simulated option prices from the SVCJ model displayed on BSIV. The option prices are
simulated using the COS method given the analytic solution for the CCF and a large
number of expansion terms N = 1024 with [a, b] = [−4

√
T, 4

√
T].
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Simulation setup

▶ The number of expansion terms is N = 25.

▶ Compare with the kernel smoothing method with the following
bandwidth:

h = c
log n n− 1

2p+1

with p = 2 and different constant values c > 0.
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Simulation results. Call prices

Table 1: Monte Carlo results for the call prices under the SVCJ model

K/F0 0.86 0.9 0.95 1.0 1.05 1.09

C0(K) 560.66 402.23 210.81 54.13 0.61 0.14

iCOS MC bias -0.00075 0.00039 -0.00036 3.0e-5 -0.00207 -0.00055
MC std 0.0102 0.00969 0.00941 0.00926 0.009 0.00933
As. std 0.00981 0.00944 0.009 0.00909 0.00906 0.00893

KS, c = 0.2 MC bias -0.07909 -0.00276 -0.00383 -0.10338 0.35918 -0.04309
MC std 0.00442 0.00427 0.0044 0.00433 0.00637 0.00369

KS, c = 0.1 MC bias -0.01325 2.0e-5 -0.00027 -0.02496 0.11357 -0.00912
MC std 0.00621 0.00582 0.00603 0.00589 0.00661 0.00594

KS, c = 0.05 MC bias -0.00078 0.0005 6.0e-5 -0.00627 0.03224 -0.00178
MC std 0.00828 0.00811 0.00835 0.00831 0.00839 0.00834

KS, c = 0.03 MC bias -0.00066 0.00068 0.00024 -0.00249 0.01229 -0.00133
MC std 0.01043 0.01051 0.01063 0.01061 0.01068 0.01082
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Simulation results. RND back

Table 2: Monte Carlo results for the RND under the SVCJ model

K/F0 0.86 0.9 0.95 1.0 1.05 1.09

f (log K) 0.13 0.49 2.76 11.37 3.11 0.03

iCOS MC bias 0.0211 0.0032 0.0058 -0.0066 0.0711 0.0216
MC std 0.1503 0.1138 0.0994 0.0972 0.0954 0.0937
As. std 0.1462 0.1099 0.095 0.0933 0.091 0.0854

KS, c = 0.2 MC bias 0.002 0.0511 0.0169 0.319 -0.2341 0.0161
MC std 0.0033 0.005 0.006 0.0702 0.0075 0.0043

KS, c = 0.1 MC bias -0.0999 -0.0373 -0.1284 -0.2761 -0.1874 -0.0584
MC std 0.0211 0.0263 0.0286 0.0316 0.0327 0.0285

KS, c = 0.05 MC bias -0.0209 -0.0203 -0.0609 -0.1186 -0.1087 -0.0186
MC std 0.1364 0.1469 0.1541 0.1627 0.1743 0.1844

KS, c = 0.03 MC bias 0.0063 -0.0174 -0.0296 0.0006 -0.0703 -0.0091
MC std 0.469 0.4929 0.5117 0.5418 0.5904 0.6125
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Cosine coefficients
The cosine coefficients Dm are estimated as

D̂m := e−rT cos
(

um log
F
α

)
+

n

∑
i=1

wiψm(Ki)O(Ki)∆n, (8)

where wi are the coefficients of a chosen numerical integration method.

Proposition

Under Assumptions 1–2, E
[

D̂m − Dm

]
= ζD

m,n, where ζD
m,n is the discretization

error with the order depending on the chosen numerical integration scheme, and as
n → ∞

D̂m − Dm

σD(m)
d−→ N (0, 1),

with σ2
D(m) = ∑n

i=1 w2
i ψ2

m(Ki)σ
2
i ∆2

n.
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S&P 500 options back

Figure 7: Estimated cosine coefficients D̂m (left) and Âm (right)
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