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Motivation (1 / 4)

This research looks at the problem of identifying multiple takers of portfolios of a financial actor defaulting on
several Central Clearinghouse Counterparties [CCPs] based on the following principles:

The financial network is closed (adiabatic): no input or output of cashflows other than those in the
financial system
If a default occurs, financial positions must be re-allocated in the system to ensure closedness

Scenario: a default happens on several CCPs that need to re-arrange positions with surviving members. Critical
for financial regulators as large liquidity pools concentrated by CCPs and liquidity pressure default puts on other
members.
CCP institutions:

prominent financial actors from G20 September 2009 summit onward (G20 Research Group, 2009) with
mandatory clearing for all “standardizable” (incl. OTC) products
transform counterparty risk into liquidity risk by guaranteeing the negotiated contracts in exchange of
various layers of collaterals posted by their members

Use Case 1: Ronin Capital (asset manager):
default on two CCPs occurred in the United States
in March 2020 during the Covid-19 pandemic crisis (illustrated in Bastide et al. (2023))

Use Case 2: Credit Suisse:
beginning of 2023 liquidity issues whilst being a major member towards 30 CCPs across the world
SNB granted a liquidity contribution of around €170bn (CHF 168bn, see Jordan (2023)) to prevent Credit
Suisse from defaulting.
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Motivation ( 2 / 4 )
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Figure 1: Promised cash flows between market participants. The reference clearing member bank is on the left.

7 / 27



Motivation (3 / 4)

(a) Network consisting of two CCPs (in red), 123 members for CCP1 seen on the left hand side, and 56 members for CCP2 on the right hand side, with
24 common members displayed as the group of members in the middle of the two CCPs (155 members in total, in blue), and with 179 cleared clients (in
green).

(b) Large clearing network example (Q2-2021) with 16 CCPs in red and their members in blue with many having common memberships concentrated in
the center of the network. Credit Suisse (EOY 2023) was one of the center blue dots.
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Motivation (4 / 4) Link to simulated Annealing approach
CCP Problem characteristics:

A member must be identified for each CCP the default has happen (recall Credit Suisse could have defaulted
on 30 (major) CCPs)
There are hundreds of major financial actors, many exposed to several CCPs at the same time
The number of possible take-over configuration is of order 30050 (on reduced financial network)

Problem resolution approach: Given the high dimension of the problem and high computational costs,
we develop the formulation to apply discrete simulated annealing algorithm technique to an approximated
version of the problem
we show theoretically that the solution should converge to the true solution of the true (non-approximated)
problem
we illustrate numerically that it can identify the set of optimal takers w.r.t. some cost minimization across
all CCPs (represented by their members)
we numerically show it outperforms a simple greedy search without re-sampling

Discrete simulated annealing applied in finance:
Portfolio optimization through mean-variance formulation (Markowitz, 1952; Fabozzi et al., 2012; Rubio-
Garćıa et al., 2022): Ingber (1993); Crama and Schyns (2003), combined with recent development of
quantum computer technologies (Choi, 2011; Luoa et al., 2014; Lang et al., 2022)
Business risk Eraña-D́ıaz et al. (2020)
Reverse stress test (parameters selection) Montesi et al. (2020)

Discrete simulated annealing literature: Kirkpatrick et al. (1982, 1983); Aarts and van Laarhoven (1988); Aarts
and Korst (1989); Catoni (1992); Duflo (1996); Henderson et al. (2003); Moral (2004); Delmas and Jourdain
(2006); Delahaye et al. (2019)
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Problem formulation (1 / 2)

We assume an idealized auction with take-over members leading to the least costs to the entire network.
K CCPs with member 0 defaulted and 10 (surviving) members exposed to all CCPs (if not, corresponding
exposure is simply zero).

L[k,ik] overall potential loss across members of CCP k post default resolution when ik takes over the
defaulted portfolio on CCP k.

Loss allocated to members pro-rata to their position size with ω
[k,ik]
ℓ

coefficient of member ℓ on CCP k

post default resolution ⇒ L[k,ik]
ℓ

= ω
[k,ik]
ℓ

L[k,ik]

Aggregated loss for member ℓ over all CCPs is
∑

k
L[k,ik]

ℓ
belonging to some sub-vector space X ⊂

L1(Ω) defined from a probability space (Ω, F, P).
Each member minimizes risk metric Rℓ (e.g. expectation, quantile or expected shortfall) applied to its
loss
∑

k
L[k,ik]

ℓ
compensated by costs c

[i]
ℓ

∈ R (with i = (i1, . . . , iK) and ik taking over on CCP k).

Takers i∗
1 , . . . , i∗

K ∈ 1 .. L minimize the aggregated measure of risks over the CCPs’ members

(i
∗
1 , . . . , i

∗
K ) = arg min

i1,...,iK

L∑
ℓ=1

Rℓ

(
K∑

k=1

L[k,ik]
ℓ

− c
[i]
ℓ

)
.
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Problem formulation (2 / 2)

L[k,ik]
ℓ,c

is a function fk
ℓ

of some updated r.v.’s
(

Ỹ k
1 , . . . , Ỹ k

L

)
that can be easily generated (e.g. elliptical r.v.’s) written

L[k,ik]
ℓ,c

= fk
ℓ

(
Ỹ k

1 , . . . , Ỹ k
L

)
− E
[

fk
ℓ

(
Ỹ k

1 , . . . , Ỹ k
L

)]
.

For Y :=
{

Y k
ℓ

}
1≤ℓ≤L
1≤k≤K

∈ RLK , we write Y
⊕

i
Y0 the updated version of Y where the components Y 1

0 , . . . , Y K
0

are added to Y 1
i1

, . . . , Y K
iK

resp.

With gℓ(·) =
∑K

k=1
fk

ℓ
(·) −

∑K

k=1
E
[

fk
ℓ

(·)
]

, i = (i1, . . . , iK ), I = {1, . . . , L}K the minimization of the
true problem is

min
i∈{1,...,L}K

L∑
ℓ=1

Rℓ

(
gℓ

(
Y
⊕

i
Y0

))
︸ ︷︷ ︸

=:H(i)

, and Iopt := arg min
i∈I

L∑
ℓ=1

H(i).

In our problem, no access to H(i), only to an approximated version with M samples. LetRM
ℓ

the empirical version ofRℓ

for each member ℓ based on Ym and Ym
0 , simulations of Y and Y0 resp., m = 1, . . . , M . Approximated problem

based on an approximated Hamiltonian to solve is

min
i∈{1,...,K}L

L∑
ℓ=1

RM
ℓ

[
gℓ

(
Y
⊕

i
Y0

)]
︸ ︷︷ ︸

:=HM (i)

, and Iopt
M

= arg min
i∈I

HM (i).
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Theoretical aspects of Combinatorial SA - known results (1 / 2)
For a given energy function H, consider the minimization problem of finding i∗ ∈ arg mini∈I H(i) with H : I −→ R. The SA
algorithm runs for some predefined N iterations and approximates i∗ by iN . Starting from In−1 ∈ I, the state I′ is suggested
at time n, in some neighbourhood O(In−1) of In−1 with a generation probability distribution given by (Pn(i, j))j∈O(i) with
(Pn(i, j))i,j∈I a stochastic matrix.
The next iteration of the process I is In = I′1{Un≤An(In−1,I′)} + In−11{Un>An(In−1,I′)}.
By (Delmas and Jourdain, 2006, Proposition 2.2.1, p. 35), In follows the discrete distribution whose probability coefficients are

Qn(i, j) =
{

Pn(i, j)An(i, j) if j ̸= i
1−
∑

j′ ̸=i
Qn(i, j′) if j = i.

Theorem 1
(Aarts and Korst, 1989, Theorem 3.3, page 42) Consider H(·) to minimize on I with a cooling schedule (cn, n ≥ 1) s.t. limn→∞ cn = 0.
Assume that for any k ≥ 1 the acceptance probabilities (A(i, j, c))i,j∈I for any temperature schedule value c > 0 and the generation probabilities(

Pk(i, j)
)

i,j∈I
are linked through (Qn(i, j))i,j∈I and respectively satisfies

1 the generation transition probability distribution
{(

Pk(i, j)i,j∈I

)}
k≥1

is irreducible and symmetric

2 ∀k ≥ 1, ∀i, j ∈ I,

{
A(i, j, c) = 1 if H(i) ≥ H(j)
A(i, j, c) ∈ (0, 1) if H(i) < H(j)

3 ∀k ≥ 1, ∀i, j, l ∈ I with H(i) ≤ H(j) ≤ H(l), A(i, l, c) = A(i, j, c)A(j, l, c)

4 ∀i, j ∈ I with H(i) < H(j): limk→∞ A(i, j, ck) = 0.

Then there exists an invariant distribution πn to the SA algorithm whose components, for arbitrary i0 ∈ I, are given by

πn(i) =
A(i0, i, cn)∑

j∈I
A(i0, j, cn)

, for all i ∈ I and lim
n→∞

πn(i) =
1

|Iopt|
1{i∈Iopt}.
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Theoretical aspects of Combinatorial SA - known results (2 / 2)
Let i s.t. H(i) > H = minj∈I H(j), γ = (i0, . . . , in) a possible trajectory from i to i∗ ∈ Iopt with i0 = i and in = i∗ i.e.
in ∈ Iopt and P (il, il+1) > 0 for 0 ≤ l < n. H(γ) := max0≤l≤n−1 H(il) − H. Let Γi be the set of all possible trajectories

from i to Iopt and Hi = minγ∈Γi
H(γ). H = maxi∈I Hi depends on both H(·) and

(
P (i, j)

)
i,j∈I

. H = mini∈I Hi . Define

D = max
i:H(i)>H

(Hi)/(H(i) − H) − 1 ∈ [0, (H/H) − 1] be the difficulty associated to H(·).

Theorem 2
Hajek (1988, Theorem 1) We have limn→∞ QH(In) > H = 0 iff limn→∞ cn = 0 and

∑∞
n=1

e−H∗/cn = ∞.

Theorem 3
Delmas and Jourdain (2006, Theorem 2.3.9) There are two constants B2 ≥ B1 ≥ 0 such that for all N ≥ 1,

B1
N1/D

≤ maxi∈I infc0≥···≥cN
P(c0,...,cN )

(
H(IN ) > H

∣
I0 = i

)
≤ B2

N1/D
, where P(c0,...,cN ) is the probability

measure under the considered cooling schedule c0 ≥ · · · ≥ cN . And for all A > 0, there exists δA > 0 s.t. for all N , the cooling schedule(
c

(N,A)
0 , . . . , c

(N,A)
N

)
with c

(N,A)
n = 1

A

(
A

log(N)2

) n
N , satisfies

max
i∈I

P
(

H(IN,A) > H
∣

I0 = i
)

≤ δA

( log(N) log
(

log(N)
)

N

)1/D
,

where IN,A is the algorithm proposed solution after N iterations based on the cooling schedule
(

c
(N,A)
0 , . . . , c

(N,A)
N

)
.
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Theoretical aspects of Combinatorial SA - error bounds (1 / 2)

Consider HM (·) defined on I that depends on M Monte-Carlo samples X1:M = (X1, . . . , XM ) (e.g. Xm =

gℓ

(
Ym
⊕

i
Ym

0

)
, m ∈ 1 . . . M). Denote by B : R∗

+ × N∗ → R∗
+, the function s.t., for any i ∈ I, for any

ε > 0, for any M ∈ N∗, (Reiss, 1989; Boucheron et al., 2013; Chamakh et al., 2021)

P
(√

M|HM (i)−H(i)| > ε
)
≤ B(ε, M).

Let A chosen independent from X1:M and DX1:M be the difficulty associated to HM . From Theorem 3, there exists

δA
X1:M

> 0 such that for all N , using c
(N,A)
n = 1

A

(
A

log(N)2

) n
N , satisfies PX1:M

(
HM

(
IN

M

)
> HM

)
≤

maxi∈I PX1:M

(
HM

(
IN

M

)
> HM

∣∣I0 = i
)

≤ δA
X1:M

(
log(N) log2(N)

N

) 1
DX1:M , with log2(N) =

log
(

log(N)
)

, δA
X1:M

and DX1:M explicitly depending on X1:M .

Theorem 4
Let i∗ ∈ arg mini∈I H(i), I∗

M
∈ arg mini∈I HM (i)and IN

M
be the solution found by the algorithm to minimize HM (·) over I after N

iterations with HM (i) an empirical estimation of H(i), i ∈ I, based on M i.i.d. samples X1, . . . , XM . For any ε > 0, we have
P
(√

M

(
HM

(
IN
M

)
− H(i∗)

)
< −ε

)
≤ |I|B(ε, M),

P
(√

M

(
HM

(
IN
M

)
− H(i∗)

)
> ε

)
≤ E

[
δA

X1:M

(
log(N) log

(
log(N)

)
N

) 1
DX1:M

]
+ B

(
ε
2 , M

)
.
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Theoretical aspects of Combinatorial SA - error bounds (2 / 2)

Corollary 3.1
(Estimation error) Let i∗ ∈ arg mini∈I H(i), I∗

M ∈ arg mini∈I HM (i) and IN
M some random solution identified by the

algorithm after N iterations. For any ε > 0,

P
(√

M
(

H
(

IN
M

)
−H(i∗)

)
≥ ε
)

≤ |I|B
(

ε

2
, M

)
+ E

δ
A
X1:M

(
log(N) log

(
log(N)

)
N

) 1
DX1:M

 + B

(
ε

4
, M

)
.

Proposition 1
Under the same assumptions of Theorem 4,

P
(

I
N
M /∈ Iopt

M

)
≤ E

δ
A
X1:M

(
log(N) log

(
log(N)

)
N

) 1
DX1:M

 ,

P
(

I
N
M /∈ Iopt

)
≤ |I|B

(
ε

2
, M

)
+ E

δ
A
X1:M

(
log(N) log

(
log(N)

)
N

) 1
DX1:M

 + B

(
ε

4
, M

)
.
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Numerical example (1 / 6) Algorithm

Result: Return IN
M and HM

(
IN

M

)
Initialise IN

M ← I based on ik minimizing cost on each CCP k separately, k = 1, . . . , K;
Evaluate HN

M ← HM

(
IN

M

)
;

n← 1;
while n ≤ N do

cn ← c/ ln(n + 1)
(

or cn ← 1
A

(
A
/

log(N)2
)n/N )

;
k ← 1 ;
for k = 1 to K do

Draw ik based on net-gross effect probabilities;
or homogeneous probabilities for all members of CCP k;

end
Define I′ ← (i1, . . . , iK ) and evaluate HM (I′) and HM (I);

Calculate An(I, I′) = exp
{
−
(

Hk(I′)−Hk(I)
)+/

ck

}
;

Draw a uniform r.v. Un;
if Un ≤ An(I, I′) then

update I← I′;
end
Evaluate HM (I);
if HM (I) < HM (IN

M ) then

IN
M ← I and HN

M ← HM (I);
end
n← n + 1;

end
Algorithm 0: Combinatorial discrete SA for CCPs Default resolution
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Numerical example (2 / 6) setup
Consider 4 CCPs with 11 common members indexed from 0 to 10 among which member 10 has defaulted

The portfolio drivers (Y k
ℓ

)0≤ℓ≤10
1≤k≤4

are all (correlated) Student r.v.’s with degree of freedom 3. The credit latent variables

(Xℓ)1≤ℓ≤L are (correlated) standard Gaussian r.v.’s N (0, 1) (see also Table 2)

all surviving members are assumed to have a one year default intensity of 1%
for convergence nuemrical illustration and confidence levels, 100 runs of the algorithm has been considered with N varying
from 25 to 3000 iteration steps, with a step of 25 iterations
A quantile at 99.9% is considered for the risk measure of all members with it upper confidence level as estimated energy
levels (Meeker et al., 2017, Appendix G, p. 497)
The parameters of the various costs calculations are summarized in Table 1:

One-period length for default 1 year
Liquidation period at default ∆l 1 year
Portfolio variations correlation ρc’s 30%
Credit factors correlation ρm’s 20%
Quantile level used for clearing members EC calculation 99.9%
Number of Monte-Carlo simulation (for credit cost and EC computations) 100,000

Table 1: XVAs calculation configuration

The (simplified) loss r.v. for member ℓ on CCP k is

L[k]
ℓ

=
1Xℓ<Bℓ

1− γℓ

1

1 +
∑10

ℓ′=1
1X

ℓ′ <B
ℓ′

10∑
ℓ′=1

1X
ℓ′ ≥B

ℓ′ Yℓ′
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Numerical example (3 / 6)
portfolio id size trend volatility
p0 (cm0) −32.41 −3.24 20%
p1 (cm1) 22.18 2.22 21%
p2 (cm2) −15.17 −1.52 22%
p3 (cm3) −10.38 −1.04 23%
p4 (cm4) −7.1 −0.71 24%
p5 (cm5) −4.86 −0.49 25%
p6 (cm6) 3.33 0.33 26%
p7 (cm7) −2.28 −0.23 27%
p8 (cm8) −1.56 −0.16 28%
p9 (cm9) 0.9 0.09 29%

p20 (cm10) 47.36 4.74 30%

(a) CCP 1

portfolio id size trend volatility
p10 (cm0) −60.54 −6.05 35%
p11 (cm1) 45.88 4.59 36%
p12 (cm2) −34.77 −3.48 37%
p13 (cm3) 26.35 2.63 38%
p14 (cm4) 19.97 2.00 39%
p15 (cm5) 15.13 1.51 40%
p16 (cm6) −11.47 −1.15 39%
p17 (cm7) −8.69 −0.87 38%
p18 (cm8) 6.59 0.66 37%
p19 (cm9) 4.99 0.5 36%

p21 (cm10) −3.44 −0.34 30%

(b) CCP 2

portfolio id size trend volatility
p22 (cm0) 12.94 1.29 30%
p23 (cm1) −11.27 −1.13 29%
p24 (cm2) 9.81 0.98 28%
p25 (cm3) −8.54 −0.85 27%
p26 (cm4) 7.43 0.74 26%
p27 (cm5) 10.38 1.04 25%
p28 (cm6) −25.89 −2.59 40%
p29 (cm7) 22.54 2.25 39%
p30 (cm8) −19.62 −1.96 38%

p31 (cm10) 17.08 1.71 37%
p32 (cm9) −14.87 −1.49 37%

(c) CCP 3

portfolio id size trend volatility
p33 (cm2) −4.13 −0.41 20%
p34 (cm1) 3.79 0.38 19%
p35 (cm0) −3.47 −0.35 18%
p36 (cm3) 3.19 0.32 17%
p37 (cm4) −2.92 −0.29 16%
p38 (cm5) 2.68 0.27 15%

p39 (cm10) −2.46 −0.25 21%
p40 (cm8) 2.26 0.23 22%
p41 (cm7) −2.07 −0.21 23%
p42 (cm6) 1.9 0.19 24%
p43 (cm9) 1.24 0.12 25%

(d) CCP 4

Table 2: CCPs and members portfolios with defaulted member and corresponding portfolios, ground truth takers and their
corresponding portfolios prior take-over
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Numerical example (4 / 6)

(a) Energies landscape (b) Error probabilities per N
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Numerical example (5 / 6)

Figure 3: Combinations distribution for a number of occurence > 50.
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Numerical example (6 / 6)

Figure 4: Combinations distribution for a number of occurrence > 50 per algorithm run. The band correspond
to the top 6 combinations of the form cm0 cm4 cm4 cmx with x ∈ {2, 3, 4, 5, 7, 8}.
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Conclusion

We reformulated an intricate financial network “deformation” problem as a combinatorial discrete SA
optimization problem
We emphasized the needed convergence results and error bounds when considering a certain type of
cooling schedule
We proposed a realistic example to test the approximated version of the algorithm
We showed various encouraging results and analysis for applying such approximated algorithm
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(2020). Optimization for risk decision-making through simulated annealing. IEEE Access 8, 117063–117079.

Fabozzi, F. J., H. M. Markowitz, P. N. Kolm, and F. Gupta (2012). Mean-Variance Model for Portfolio Selection. John Wiley &
Sons, Ltd.

G20 Research Group (2009, September). G20 leaders statement: The pittsburgh summit, september 24-25, 2009, pittsburgh.
Retrieved on March 28, 2024 on http://www.g20.utoronto.ca/2009/2009communique0925.html.

25 / 27

http://www.g20.utoronto.ca/2009/2009communique0925.html


References II

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operations Research 13(2), 311–329.
Henderson, D., S. H. Jacobson, and A. W. Johnson (2003). The Theory and Practice of Simulated Annealing, pp. 287–319.

Boston, MA: Springer US.
Ingber, L. (1993, 12). Simulated annealing: Practice versus theory. Mathematical and Computer Modelling 18, 29–57.
Jordan, T. J. (2023, November). The snb’s role as lender of last resort in the crisis at credit suisse. [Retrieved on February 15

2024], url =https://www.snb.ch/public/publication/en/www-snb-
ch/publications/communication/speeches/2023/ref 20231101 tjn/0 en/ref 20231101 tjn.en.pdf.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1982). Optimization by simulated annealing. IBM Thomas J. Watson Research
Center Report.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing. Science 220(4598), 671–680.
Lang, J., S. Zielinski, and S. Feld (2022). Strategic portfolio optimization using simulated, digital, and quantum annealing.

Applied Sciences 12(23).
Luoa, Y., B. Zhub, and Y. Tanga (2014). Simulated annealing algorithm for optimal capital growth. Physica A: Statistical

Mechanics and its APplications 108, 10—-18.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance 7(1), 77–91.
Meeker, W. Q., G. J. Hahn, and L. A. Escobar (2017). Statistical Intervals, A Guide for Practitioners and Researchers. Hoboken,

New Jersey, United States: Wiley.
Montesi, G., G. Papiro, M. Fazzini, and A. Ronga (2020). Stochastic optimization system for bank reverse stress testing. Journal

of Risk and Financial Management 13(8), 1–43.
Moral, P. D. (2004). Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications. Springer-Verlag

New York.
Reiss, R.-D. (1989). Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics. Springer New

York.
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