A mutually exciting rough jump-diffusion (MERJD) for financial modelling

D. Hainaut, UCLouvain, Belgium

ICCF 2024, Amsterdam

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Introduction

The propensity of financial price jumps to cluster is a well known phenomenon. This is particularly true for crypto-currencies such as the Bitcoin.





Jumps, hourly log-return.

Date

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ \_ 圖 \_ のの()

# Introduction

A natural way to replicate the clustering of jumps is offered by Hawkes self-exciting processes (Hawkes [3, 4]).

A self-exciting point processes,  $L_t = \sum_{k=1}^{N_t} J_k$  has a jump arrival intensity  $\lambda_t$  (*i.e.* $\mathbb{E}(N_t | \mathcal{F}_{t-}) = \lambda_{t-} dt$ ) depending on the number of previous shocks.

The jump intensity increases after a shock and revert next to a baseline level,  $\lambda_0$ . The speed of reversion is determined by a memory kernel, k(.).

$$\lambda_t = \lambda_0 + \int_0^t k(t-s) \, dN_s$$

We can draw a parallel between Hawkes processes and Brownian Volterra processes (BVP) of the form

$$X_t = X_0 + \int_0^t k(t-s) dW_s \, .$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

### Introduction

Both are usually non-Markov and depend on a memory kernel k(.). Among BVP, rough processes received a great deal of attention.

A rough process is close to a fractional Brownian motion (fBm) with a Hurst index H < 1/2.

At time t > 0, the rough fBm with  $\alpha \in (1/2, 1]$  admits an integral representation with respect to a Bm,  $W_t$ :

$$\mathsf{fBm}_t \propto \int_0^t \frac{(t-s)^{lpha-1}}{\Gamma(lpha)} dW_s$$

This Brownian stochastic integral is well-defined even if the rough kernel  $\frac{u^{\alpha-1}}{\Gamma(\alpha)}$ , diverges when  $u \to 0$ .

This motivates us to study self-exciting processes with a dampened rough kernel:

$$\lambda_t = \lambda_0 + \eta \int_0^t e^{-\beta(t-s)} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \, dN_s \, .$$

# MERJD dynamic

 $(S_t)_{t\geq 0}$  is a price process and its log-return  $X_t = \ln \frac{S_t}{S_0}$  is ruled by a mutually exciting rough jump diffusion (MERJD):

$$X_t = \left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t + \sum_{j=1}^2 \left(L_t^{(j)} - \mu_j \int_0^t \lambda_s^{(j)} ds\right),$$

where  $\left(L_t^{(1)}\right)_{t\geq 0}$  and  $\left(L_t^{(2)}\right)_{t\geq 0}$  are positive and negative point processes,

$$L_t^{(j)} = \sum_{k=1}^{N_t^{(j)}} J_k^{(j)}, j = 1, 2.$$

The distributions of  $J_k^{(j)} \sim J^{(j)}$  for j = 1, 2, are  $m^{(j)}(.)$  with  $\mu_j = \mathbb{E}(J^{(j)})$  and  $\mathcal{J}_j(\omega) = \mathbb{E}(e^{\omega J^{(j)}})$ .

#### MERJD, dynamic

In examples, jumps are positive and negative expo. r.v. If  $\rho_1 \in \mathbb{R}^+$ and  $\rho_2 \in \mathbb{R}^-$ ., the pdf's of  $J^{(1)}$  and  $J^{(2)}$  are

$$m^{(1)}(z) = \rho_1 e^{-\rho_1 z} \mathbb{1}_{\{z \ge 0\}}, \ m^{(2)}(z) = -\rho_2 e^{-\rho_2 z} \mathbb{1}_{\{z \le 0\}}$$

The intensities depend on pas  $\left(N_t^{(j)}\right)_{t\geq 0}$  for j=1,2 in the following way:

$$\begin{pmatrix} \lambda_t^{(1)} \\ \lambda_t^{(2)} \end{pmatrix} = \begin{pmatrix} \lambda_0^{(1)} \\ \lambda_0^{(2)} \end{pmatrix} + \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix} \begin{pmatrix} \int_0^{t-} e^{-\beta(t-s)} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} dN_s^{(1)} \\ \int_0^{t-} e^{-\beta(t-s)} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} dN_s^{(2)} \end{pmatrix}$$

where  $\alpha \in (0, 1]$ ,  $\beta$ ,  $\eta_{i,j} \in \mathbb{R}^+$  for  $i, j \in \{1, 2\}$ . We call  $k(u) = e^{-\beta u} \frac{u^{\alpha-1}}{\Gamma(\alpha)}$ , the dampened rough (or gamma) kernel.

### The dampened rough kernel

The dampened rough kernel, belongs to the family of Sonine functions [6]:

#### Sonine function

A kernel  $k(u) \in L^1_{loc}(\mathbb{R}^+)$  is a Sonine function if there exists a conjugate kernel  $l(u) \in L^1_{loc}(\mathbb{R}^+)$  such that

$$\int_0^t I(t-u) \, k(u) \, du = 1 \, , \, \forall t \ge 0.$$
 (1)

Let  $\phi \in L^1(\mathbb{R}^+)$ , the Sonine operators associated to k(u) and l(u) are defined as

$$(K\phi)(t) = \int_0^t k(t-u)\phi(u) du, \forall t \ge 0,$$

$$(L\phi)(t) = \int_0^t l(t-u)\phi(u) du, \forall t \ge 0.$$
(2)

### The dampened rough kernel

Given the similarity between  $K\phi$  with  $I_{0+}^{\alpha}\phi$ , the Riemann-Liouville integral

$$K\phi = \frac{1}{\Gamma(\alpha)} \int_0^t \frac{e^{-\beta(t-u)}\phi(u)}{(t-u)^{1-\alpha}} du , \ I_{0+}^{\alpha}\phi := \frac{1}{\Gamma(\alpha)} \int_0^t \frac{\phi(u)}{(t-u)^{1-\alpha}} du$$

we call the operator K as the dampened Riemann-Liouville (RL) integral. If  $\phi \in L_1$  then  $\alpha \in (0, 1)$ .

#### Proposition

The conjugate kernel I(.) of k(.) satisfying condition (1), is :

$$I(u) = \beta^{\alpha} + \frac{\alpha}{\Gamma(1-\alpha)} \int_{u}^{\infty} \frac{e^{-\beta s}}{s^{1+\alpha}} ds, \qquad (3)$$

# The dampened rough kernel

#### Proposition

The inverse operator of the dampened RL integral K, is the derivative of its conjugate kernel. For  $\phi \in L^1(\mathbb{R}^+)$ ,

$$(K^{-1}\phi)(t) = \frac{d}{dt}(L\phi)(t)$$

$$= \frac{d}{dt}\int_0^t I(t-u)\phi(u) du.$$
(4)

This inverse operator is called the dampened RL derivative.

Usefulness? The Laplace transform of  $L_t^{(j)}$  will depend upon the solution of a fractional differential equation with operators K or  $K^{-1}$ .

#### Proposition

Let  $u_j = \mathbb{E}\left(\lambda_t^{(j)}\right)$  for j = 1, 2. Expected intensities at time  $t \ge 0$  conditionally to the filtration  $\mathcal{F}_0$ , are given by

$$\mathbb{E}_{0}\left(\begin{array}{c}\lambda_{t}^{(1)}\\\lambda_{t}^{(2)}\end{array}\right) = \left(\begin{array}{c}\lambda_{0}^{(1)}\\\lambda_{0}^{(2)}\end{array}\right) + \left(\begin{array}{c}\eta_{11}&\eta_{12}\\\eta_{21}&\eta_{22}\end{array}\right) \left(\begin{array}{c}(\mathsf{K}\mathsf{u}_{1})(t)\\(\mathsf{K}\mathsf{u}_{2})(t)\end{array}\right)$$

where  $(Ku_j)(t) = \int_0^t k(t-u) u_j du$  are respectively equal to

$$\begin{aligned} (\mathcal{K}u_1)(t) &= \int_0^t \left(\lambda_0^{(1)} + \eta_{12} \left(\mathcal{K}u_2\right)(s)\right) e^{-\beta(t-s)}(t-s)^{\alpha-1} E_{\alpha,\alpha} \left(\eta_{11}(t-s)^{\alpha}\right) ds \\ (\mathcal{K}u_2)(t) &= \int_0^t \left(\lambda_0^{(2)} + \eta_{21} \left(\mathcal{K}u_1\right)(s)\right) e^{-\beta(t-s)}(t-s)^{\alpha-1} E_{\alpha,\alpha} \left(\eta_{22}(t-s)^{\alpha}\right) ds \end{aligned}$$

Without cross contagion, we can integrate by parts  $Ku_1$  and  $Ku_2$ .

#### Proposition

If the parameters defining  $\lambda_t^{(1)}$  and  $\lambda_t^{(2)}$  fulfill the following three conditions

$$\beta^{\alpha} \ge \eta_{11} , \quad \beta^{\alpha} \ge \eta_{22} , (\beta^{\alpha} - \eta_{11}) (\beta^{\alpha} - \eta_{22}) \ge \eta_{12} \eta_{21} ,$$

the expected intensities admit a limit when  $t 
ightarrow \infty$ , that are:

$$\begin{pmatrix} \lambda_{\infty}^{(1)} \\ \lambda_{\infty}^{(2)} \\ \lambda_{\infty}^{(2)} \end{pmatrix} = \begin{pmatrix} \frac{\lambda_{0}^{(1)}(\beta^{\alpha} - \eta_{22})\beta^{\alpha} + \eta_{12}\lambda_{0}^{(2)}\beta^{\alpha}}{(\beta^{\alpha} - \eta_{11})(\beta^{\alpha} - \eta_{22}) - \eta_{12}\eta_{21}} \\ \frac{\lambda_{0}^{(2)}(\beta^{\alpha} - \eta_{11})\beta^{\alpha} + \eta_{21}\lambda_{0}^{(1)}\beta^{\alpha}}{(\beta^{\alpha} - \eta_{11})(\beta^{\alpha} - \eta_{22}) - \eta_{12}\eta_{21}} \end{pmatrix}$$

#### Markov representation

For j=1,2, let us consider a family of auxiliary jump processes  $Z_t^{(j,\xi)},$  indexed by  $\xi\in\mathbb{R}^+$  with

$$dZ_t^{(j,\xi)} = -(eta + \xi)Z_t^{(j,\xi)}dt + dN_t^{(j)}$$
.

Le us denote  $\gamma(d\xi) := \frac{\xi^{-\alpha}}{\Gamma(1-\alpha)} d\xi$  for  $\xi \ge 0$ . The intensities  $\lambda_t^{(j)}$  are expressed as integrals of  $Z_t^{(j,\xi)}$  with respect to  $\gamma(d\xi)$ :

$$\begin{pmatrix} \lambda_t^{(1)} \\ \lambda_t^{(2)} \end{pmatrix} = \begin{pmatrix} \lambda_0^{(1)} \\ \lambda_0^{(2)} \end{pmatrix} + \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix} \begin{pmatrix} \frac{1}{\Gamma(\alpha)} \int_0^\infty Z_t^{(1,\xi)} \gamma(d\xi) \\ \frac{1}{\Gamma(\alpha)} \int_0^\infty Z_t^{(2,\xi)} \gamma(d\xi) \end{pmatrix}$$

By construction,  $\left(\lambda_t^{(1)}, \lambda_t^{(2)}, L_t^{(1)}, L_t^{(2)}, \left(Z_t^{(j,\xi)}\right)_{j \in \{1,2\}, \xi \in \mathbb{R}^+}\right)$  is Markov (inf. dim.).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I we find the Laplace transform of  $X_t$ , we can invert it numerically to retrieve the pdf. We adopt the following framework:



# Laplace transform of the MERJD

#### Proposition

Laplace transform of the log-return  $(X_s)_{s>0}$ , conditionally to  $\mathcal{F}_0$ :

$$\mathbb{E}\left(e^{-\omega X_{s}} \mid \mathcal{F}_{0}\right) = \exp\left(-\left(\omega \left(\mu - \frac{\sigma^{2}}{2}\right) - \frac{\omega^{2} \sigma^{2}}{2}\right)s + \boldsymbol{q}_{\lambda}(s)^{\top} \boldsymbol{\lambda}_{0}\right),$$

where  $q_{\lambda}^{(j)}(s)$  for j = 1, 2 solves a forward ODE:

$$\frac{dq_{\lambda}^{(j)}(s)}{ds} = \omega \mu_j + \mathcal{J}_j(-\omega) \exp\left(\eta_{.,j}^{\top} \left(\frac{\kappa \frac{dq_{\lambda}}{ds}}{ds}\right)(s)\right) - 1 \qquad (5)$$

where  $\mathcal{K}\frac{dq_{\lambda}^{(j)}}{ds}$  is the dampened RL integral of  $\frac{dq_{\lambda}^{(j)}}{ds}$ :

$$\left(\frac{\kappa}{\frac{dq_{\lambda}^{(j)}}{ds}}\right)(s) = \frac{1}{\Gamma(\alpha)} \int_{0}^{s} \frac{e^{-\beta(s-u)}}{(s-u)^{1-\alpha}} \frac{dq_{\lambda}^{(j)}(u)}{du} du.$$

▲□▶▲□▶▲□▶▲□▶ = のへで

#### Laplace transform of the MERJD

In practice, we solve numerically Equation (5). We divide [0, s] in n subintervals  $[s_k, s_{k+1}]$  of length  $\Delta$ , for k = 0, ..., n - 1.

We denote by  $g(k) := \frac{dq_{\lambda}(s)}{ds}\Big|_{s=s_k}$ , the differential of  $q_{\lambda}$  at time  $s_k$  approximated by :

$$\begin{split} \mathbf{g}^{(j)}(k) &= \omega \mu_j + \mathbb{E}\left(e^{-\omega J^{(j)}}\right) \exp\left(\frac{\boldsymbol{\eta}_{.j}^{\top}}{\Gamma(\alpha)} \sum_{u=0}^{k-1} \frac{e^{-\beta (s_k - s_u)}}{(s_k - s_u)^{1-\alpha}} \, \mathbf{g}(u) \, \Delta\right) - 1 \, . \end{split}$$
Initial value  $g^{(j)}(0) &= \omega \mu_j + \mathbb{E}\left(e^{-\omega J^{(j)}}\right) - 1.$ 

We use this to compute the pdf of  $(X_t)_{t\geq 0}$  by Discrete Fourier Transform (e.g. for option pricing).

To illustrate this article, we fit the MERJD to time-series of hourly Bitcoin returns from the 9/2/2018 to 9/2/2023, traded in USD on the platform Gemini.

The bitcoin is traded 24h/24h and the time interval between two successive observations is  $\Delta=1/8760$  year.

Jumps are not directly observable. For this reason, we adopt a peak-over-threshold approach.

The record of p log-returns, lag  $\Delta$ , is  $\{x_1, x_1, x_2, ..., x_p\}$ , at times  $\{s_0, s_1, ..., s_p\}$ .

The thresholds  $g(\alpha_1)$  and  $g(\alpha_2)$  depend on confidence levels,  $\alpha_1$  and  $\alpha_2$ . We fit a pure Gaussian process to time-series:

$$x_k \sim \mu_g \Delta + \sigma_g W_\Delta$$

If  $\Phi(.)$  is the cdf of a standard normal,  $g(\alpha_1)$ ,  $g(\alpha_2)$  are  $\alpha_1$  and  $\alpha_2$  percentiles:

$$\mathbf{g}(\alpha_i) = \mu_g \Delta + \sigma_g \sqrt{\Delta} \Phi^{-1}(\alpha_i)$$

for i = 1, 2. The times of the  $k^{th}$  jump of  $L_t^{(1)}$  and  $L_t^{(2)}$  are :

$$\begin{aligned} \tau_k^{(1)} &= \min\{s_j \in \{s_1, ..., s_p\} \mid x_j \ge g(\alpha_1), \, s_j \ge \tau_{k-1}^{(1)}\}, \\ \tau_k^{(2)} &= \min\{s_j \in \{s_1, ..., s_p\} \mid x_j \le g(\alpha_2), \, s_j \ge \tau_{k-1}^{(2)}\}. \end{aligned}$$

The levels of confidence,  $\alpha_1$  and  $\alpha_2$ , are optimized such that the skewness and kurtosis of  $x_i$  for periods without jumps are close to those of a normal distribution.

Skewness & kurtosis (hours without jumps): -9.19e-5 and 3.0002.

| Parameters            | Values   | Parameters                      | Values  |  |
|-----------------------|----------|---------------------------------|---------|--|
| $g(\alpha_1)$         | -0.9752% | $g(\alpha_2)$                   | 1.0001% |  |
| $\widehat{\mu}\Delta$ | 0.0082%  | $\widehat{\sigma}\sqrt{\Delta}$ | 0.3830% |  |



 $\lambda_{t-}^{(j)} = \lambda_0^{(j)} + \sum_{k=1}^2 \frac{\eta_{jk}}{\Gamma(\alpha)} \sum_{\tau_u^{(k)} < t} e^{-\beta(t-\tau_u^{(k)})} (t-\tau_u^{(k)})^{\alpha-1} j = 1, 2.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Parameters are obtained by log-likelihood maximization, which has an analytical expression:

#### Proposition

We denote the Gam. inc. function by  $\Gamma(\alpha, x) = \int_x^\infty e^{-u} u^{\alpha-1} du$ . The log-likelihood of observations is

$$\ln \mathcal{L} \quad = \quad \sum_{j=1}^{2} \left( -\int_{0}^{\mathcal{S}} \lambda_{s}^{(j)} ds + \sum_{k=1}^{N_{\mathcal{S}}^{(j)}} \log \left( \lambda_{\tau_{k}-}^{(j)} \right) \right) \,,$$

where the integral of the intensity is equal to

$$\int_{0}^{S} \lambda_{s}^{(j)} ds = \lambda_{0}^{(j)} S + \sum_{k=1}^{2} \frac{\eta_{jk}}{\beta^{\alpha}} \sum_{u=1}^{N_{S}^{(k)}} \left( 1 - \frac{\Gamma\left(\alpha, \beta\left(S - \tau_{u}^{(k)}\right)\right)}{\Gamma(\alpha)} \right)$$

After this, we estimate  $\mu$  and  $\sigma$  from hourly observations, without jump. The jump size parameters are estimated by maximizing the log-likelihood of a mixed exponential-Gaussian distribution.

| MERJD                                                      |          |                               |                                                            | Non-rough version             |          |                               |          |
|------------------------------------------------------------|----------|-------------------------------|------------------------------------------------------------|-------------------------------|----------|-------------------------------|----------|
| $\widehat{\alpha}$                                         | 0.9061   | $\widehat{eta}$               | 181.7853                                                   | $\widehat{\alpha}$            | 1.0000   | $\widehat{\beta}$             | 221.0378 |
| $\widehat{\eta}_{11}$                                      | 48.6850  | $\widehat{\eta}_{12}$         | 48.9050                                                    | $\widehat{\eta}_{11}$         | 107.089  | $\widehat{\eta}_{12}$         | 90.60763 |
| $\widehat{\eta}_{21}$                                      | 2.0365   | $\widehat{\eta}_{22}$         | 87.1365                                                    | $\widehat{\eta}_{21}$         | 0.0416   | $\widehat{\eta}_{22}$         | 174.0245 |
| $\widehat{\lambda}_{0}^{(1)}$                              | 53.8714  | $\widehat{\lambda}_{0}^{(2)}$ | 101.8721                                                   | $\widehat{\lambda}_{0}^{(1)}$ | 38.0073  | $\widehat{\lambda}_{0}^{(2)}$ | 106.9566 |
| $\lambda_{\infty}^{(1)}$                                   | 488.9064 | $\lambda_{\infty}^{(2)}$      | 505.8213                                                   | $\lambda_{\infty}^{(1)}$      | 473.9214 | $\lambda_{\infty}^{(2)}$      | 503.2868 |
| Log-lik. $N_t \mathcal{L}(\widehat{\Theta_N})$ : 28 046.24 |          |                               | Log-lik. $N_t \mathcal{L}(\widehat{\Theta_N})$ : 28 039.94 |                               |          |                               |          |
| $\widehat{ ho}_1$ : 59.4260                                |          |                               |                                                            | $\widehat{ ho}_2$ : -57.8427  |          |                               |          |

Significant difference? 2  $\left( \ln \mathcal{L}(\widehat{\Theta}_N) - \ln \mathcal{L}(\widehat{\Theta}_N^h) \right) \sim \chi_1^2$  and p-value=0.0382%

The valuation of derivatives is performed under a risk-neutral measure  $\mathbb{Q}$ . Under  $\mathbb{Q}$ , discounted asset prices are martingales.

The market in our model, is incomplete. We focus on a family of changes of measure that are induced by exponential martingales of the form:

$$M_t = \exp\left(-\frac{1}{2}\int_0^t \varphi(s)^2 ds - \int_0^t \varphi(s) dW_s\right) \times \\ \exp\left(\sum_{j=1}^2 \left[\zeta_j L_t^{(j)} + (1 - \mathcal{J}_j(\zeta_j))\int_0^t \lambda_s^{(j)} ds\right]\right),$$

where  $\varphi(t)$  is a  $\mathcal{F}_t$ -adapted process such that  $\int_0^t |\varphi(s)|^2 ds < \infty$ and  $\zeta_j \in \mathbb{R}$  are such that  $\mathcal{J}_j(\zeta_j) = \mathbb{E}\left(e^{\zeta_j J^{(j)}}\right) < \infty$  for j = 1, 2.

#### Change of measure

For j = 1, 2, let us denote by  $N_t^{Q(j)}$  the counting processes of intensity  $\lambda_t^{Q(j)} = \mathcal{J}_j(\zeta_j)\lambda_t^{(j)}$ . We define  $\mathcal{J}^{Q(j)}$ , through their mgfs under the measure  $\mathbb{Q}$ :

$$\mathcal{J}_{j}^{Q}(\omega) = \mathbb{E}^{\mathbb{Q}}\left(e^{\omega J^{Q(j)}}\right) = \frac{\mathcal{J}_{j}(\omega + \zeta_{j})}{\mathcal{J}_{j}(\zeta_{j})}, j = 1, 2, \qquad (6)$$

and processes  $L_t^{Q(j)} = \sum_{k=1}^{N_t^{Q(j)}} J_k^{Q(j)}$ . Under the measure  $\mathbb{Q}$ ,

$$X_{t} = \left(\mu - \frac{\sigma^{2}}{2}\right)t - \sigma \int_{0}^{t} \varphi(s)ds + \sigma W_{t}^{Q}$$

$$+ \sum_{i=1}^{2} \left(L_{t}^{Q(j)} - \frac{\mu_{j}}{\mathcal{J}_{j}(\zeta_{j})}\int_{0}^{t} \lambda_{s}^{Q(j)}ds\right),$$

$$(7)$$

where  $dW_t^Q = dW_t + \sigma \varphi(t) dt$ .

Consequence: the equivalent measures  ${\mathbb Q}$  defined by the change of measure are risk neutral if

$$\varphi(t) = \frac{\mu - r}{\sigma} + \sum_{j=1}^{2} \frac{\lambda_{t}^{(j)} \mathcal{J}_{j}(\zeta_{j}) \left(\mathbb{E}\left(e^{J^{Q(j)}}\right) - 1\right) - \mu_{j} \int_{0}^{t} \lambda_{s}^{(j)} ds}{\sigma},$$

where *r* is the discount rate.

We evaluate European call options by DFFT and compute their implied volatility by inverting the Black & Scholes formula.

We use  $\mathbb{P}$ -parameters of bitcoin with r = 0 and set to zero the Brownian volatility to focus on the jump components of log-return.

Call

 $S_0=100$ , strikes from 50 to 150 and expiry dates from 1 to 6 months

1.5-Implied Vol 1.0-2:0 Implied Vol.3M 1.5 0 60 80 100 K 120 140 60 80 100 120 140 Strike K

IV ranges from 61.39% up to 195.58%! Large but relevant with market data. The BitVol index (30-day implied volatility), evolves between 60% and 100% with a peak up to 168% on the 17/3/2020.

### Conclusions

The rough self and mutually exciting processes are new types of non-Markov jump process, easy to combine with a diffusion.

Even if the memory kernel diverges at zero, the jump process remains stable under mild conditions. The MERJD admits an infinite dimensional Markov representation.

Considering the limit of a finite approximation allows us to retrieve the Laplace transform of the MERJD.

The DR kernel being a Sonine function, we can define a fractional operator close to the RL derivative. The Laplace transform of the MERJD depends on a solution of a fractional differential equation (FDE) using this new operator. This FDE can be solved numerically.

More info : A mutually exciting rough jump-diffusion for financial modelling, Frac. Calc. & Applied An. 27, 2024.

# Gatheral J. Jaisson T., Rosenbaum M. 2018. Volatility is rough, *Quantitative Finance* 18 (6), 933-949.

Hainaut D. 2021. Moment generating function of non-Markov self-excited claims processes. *Insurance: Mathematics and Economics*, 101, 406-424.



Ē.

Hawkes A., 1971. Point sprectra of some mutually exciting point processes. Journal of the Royal Statistical Society Series B, 33, 438-443.



- Hawkes A., 1971. Spectra of some self-exciting and mutually exciting point processes. *Biometrika*, 58, 83–90.
- Muzy J-F, Delattre S., Hoffmann M., Bacry E. 2013. Some limit theorems for Hawkes processes and application to financial statistics. *Stochastic Processes and their Applications*, 123(7), 2475-2499.



- Sonine N. 1884. Sur la généralisation d'une formule d'Abel. Acta Math. 4, 171-176.
- Stabile G., Torrisi G.L. 2010. Risk processes with non-stationary hawkes claims arrivals. Methodology and Computing in Applied Probability, 12 (3), pp 415–429.
- Hawkes A., Oakes D., 1974. A cluster representation of a self-exciting process. *Journal of Applied Probability*, 11, 493-503.