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Introduction

The propensity of financial price jumps to cluster is a well known
phenomenon. This is particularly true for crypto-currencies such as
the Bitcoin.

Bitcoin 9/2/22-23
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Introduction
A natural way to replicate the clustering of jumps is offered by
Hawkes self-exciting processes (Hawkes [3, 4]).

A self-exciting point processes, L; = ZL\I;I Ji has a jump arrival
intensity A\; (i.e. E(N¢|F¢—) = A\¢—dt) depending on the number of
previous shocks.

The jump intensity increases after a shock and revert next to a
baseline level, \g. The speed of reversion is determined by a
memory kernel,

t
/\t:)\o—i—/ dNs
0

We can draw a parallel between Hawkes processes and Brownian
Volterra processes (BVP) of the form

t
Xt:Xo+/ dWs.
0



Introduction

Both are usually non-Markov and depend on a memory kernel
Among BVP, rough processes received a great deal of attention.

A rough process is close to a fractional Brownian motion (fBm)
with a Hurst index H < 1/2.

At time t > 0, the rough fBm with a € (1/2,1] admits an integral
representation with respect to a Bm, W; :

t _ \a—1
fBm; oc/ &dWS
0 ()

This Brownlan stochastic integral is well-defined even if the rough
kernel “ d|verges when v — 0.

This motivates us to study self-exciting processes with a dampened
rough kernel:

t t— a—1
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MERJD dynamic

(St)+>0 is a price process and its log-return X; = In t is ruled by a
mutually exciting rough jump diffusion (MERJD):

2 2 _ t
Xt:<u—02>t+UWt+Z<L(tj)—,uj/o /\gj)ds),
j=1

where (Lg”) . and (L@) Lo e positive and negative point
t> t>
processes,

N
S =12
k=1

The distributions of J,Ej) ~ JU) for j = 1,2, are mU)(.) with
i =E (J(j)) and Jj(w) =E (eww).



MERJD, dynamic
In examples, jumps are positive and negative expo. r.v. If p; € RT
and p» € R™. , the pdf's of JM) and J®@) are
m(l)(z) =pre " 1l>0y, m(2)(z) = —ppe 1,0y
The intensities depend on pas (Ngj)) . for j = 1,2 in the
t>

- —fB(t—s —s)* ! (1
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)\62) M1 M22 f0t7 efﬁ(tfs) (t— )(; dNS(2)

\£=s)
Mo

following way:

)\%)
AP
where a € (0,1], B, njj € R for i,j € {1,2}. We call

k(u) = e P ‘F(E;; the dampened rough (or gamma) kernel.




The dampened rough kernel

The dampened rough kernel, belongs to the family of Sonine
functions [6]:

Sonine function
A kernel k(u) € L1 _(RT) is a Sonine function if there exists a

loc

conjugate kernel /(u) € L} _(R™) such that

loc

/tl(t—u)k(u)du:l,VtZO. (1)
0

Let ¢ € LY(R™), the Sonine operators associated to k(u) and /(u)
are defined as
t

k(t—u)¢(u)du,Vt>0, (2)

t

I(t —u)¢(u)du, ¥Vt > 0.

(Ko)(t) =
(Lo)(t) =

o— o—



The dampened rough kernel

Given the similarity between K¢ with /g, ¢, the Riemann-Liouville
integral

L et 1 e
S A Ter L (o et

(t—u —u

we call the operator K as the dampened Riemann-Liouville (RL)
integral. If ¢ € L; then a € (0,1).

The conjugate kernel /(.) of k(.) satisfying condition (1), is :

oo ,—fs
I(u) = 8% + r(loz_ a) /u :1+a as, (3)



The dampened rough kernel

Proposition

The inverse operator of the dampened RL integral K, is the
derivative of its conjugate kernel. For ¢ € L (RT),

(K9)(0) = 2 (L9) (1) (4)
d

= @), I(t—u)¢(u)du.

This inverse operator is called the dampened RL derivative.

Usefulness? The Laplace transform of Lg) will depend upon the
solution of a fractional differential equation with operators K or
K1



MERJD, dynamics and first properties

Let uyy =E (A(tj)) for j = 1,2. Expected intensities at time t > 0
conditionally to the filtration Fy, are given by

A A M1 M2 (Kun) (t)
- ( AP ) ( i >+ ( 1 722 ) ( (Kuz) (1) ) '

where (Ku;) (t) = [y k (t — u) ujdu are respectively equal to

(Kup) (8) = [if (A + mi2 (Kuz) (s)) e P79 (t — $)* 7 Eq o (1ma(t — 5)*) ds
(Kuz) (t) = [y (A + 21 (Kur) (5)) e P79 (t — ) Eq o (1122(t — 5)*) ds

Without cross contagion, we can integrate by parts Ku; and Kus.



MERJD, dynamics and first properties

Proposition
If the parameters defining )\(tl) and )\gz) fulfill the following three

conditions
B =>m1 . BY =,

(B —m1) (B* — m22) = m12mp21

the expected intensities admit a limit when t — oo, that are:

(1) )\E)l)(ﬁa—nzz)ﬁa-i-mz/\(()z)ﬁa
Aso — (BY—n11)(B¥—n22)—m127m21
)\g) AE,Z)(ﬁ“ —7711),30‘-1-7721/\((,1),30‘

(B%=m11)(BY—mn22)—m12m21



MERJD, dynamics and first properties

Markov representation

For j = 1,2, let us consider a family of auxiliary jump processes
7Y% indexed by ¢ € R with

dZ9% = (8 +€)ZF%dt + dND .

Le us denote ~(d¢&) := dé for £ > 0. The intensities )\(J) are
F(l a)

expressed as integrals of Zt(’ <) with respect to y(d¢):
XN (AR, ( o ) iy do- 2 O(de)
AP )\52) To1 122 ﬁfooo 729 (de)

By construction, | AN AP (M) 1), (Zt(hf))
Markov (inf. dim.).
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MERJD, dynamics and first properties

| we find the Laplace transform of X, we can invert it numerically
to retrieve the pdf. We adopt the following framework:

Limit case, Laplace . k() has a Laplace
y transform of X, ? representation y/(.)
n—-oo \
Infinite N

/Finite dim Laplace
transform,
forward

dimensional
. Markov model

¥(.) is apptoached by
n+1 atoms

It6’s lemma _

‘ y Finite N
dimensional

" approximation

“Finite dim Laplacé
transform,
backward



Laplace transform of the MERJD

Laplace transform of the log-return (Xs)., conditionally to Fo:

E(e™%|Fo) = exp (— (w <u - 0;) - w2202> s+ qA(S)TA0> ,

where q)(\j)(s) for j = 1,2 solves a forward ODE:

WO v gwee (n) (K2 @) 1 @

()

)
d
where K%

dq/\ e B(s—u )(U)
—= d
(K ds) a)/(s—ula du !




Laplace transform of the MERJD

In practice, we solve numerically Equation (5). We divide [0,s] in n
subintervals [sk, sx11] of length A, for k =0,...,n— 1.

We denote by g(k) := dqgs(s)

, the differential of g, at time si

S=S5j

approximated by :

k=1 B (sk—su)
W (k) = wi: - e _
g (k) qu+E(e )exp(ra 2 Oy (u)A> 1.

Initial value g)(0) = wij +E (e—wJ(D 1

We use this to compute the pdf of (X:),~ by Discrete Fourier
Transform (e.g. for option pricing).



Econometric estimation

To illustrate this article, we fit the MERJD to time-series of hourly
Bitcoin returns from the 9/2/2018 to 9/2/2023, traded in USD on
the platform Gemini.

The bitcoin is traded 24h/24h and the time interval between two
successive observations is A = 1/8760 year.

Jumps are not directly observable. For this reason, we adopt a
peak-over-threshold approach.

The record of p log-returns, lag A, is {x1 x1, X2, ..., xp}, at times
{s0,51, .-, Sp}



Econometric estimation

The thresholds g(c1) and g(a2) depend on confidence levels, ay
and ap. We fit a pure Gaussian process to time-series:

X ~ pgA + ogWa

If &(.) is the cdf of a standard normal, g(a1), g(a2) are ay and s
percentiles:

g(ai) = pgA + ogVA®d ()

for i = 1,2. The times of the k" jump of Lgl) and L§2) are :
= min{s € {15} g > glon) 5 2 7y}
7 = min{s € {15} [y < g(02), 5 = 7).
The levels of confidence, o1 and «p, are optimized such that the
skewness and kurtosis of x; for periods without jumps are close to
those of a normal distribution.



Econometric estimation

Skewness & kurtosis (hours without jumps):

-9.19e-5 and 3.0002.

’Parameters‘ Values ‘Parameters‘ Values ‘

g(a1)

-0.9752%

g(a2)

1.0001%

A

0.0082%

VA

0.3830%

log-return
X 000  0.04
N 1 I

-0.04
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Econometric estimation

Parameters are obtained by log-likelihood maximization, which has
an analytical expression:
Proposition

We denote the Gam. inc. function by I (a,x) = [*° e “u*"'du.
The log-likelihood of observations is

2 S NY
ne = Y —/ Xds+> 1og (A ) |
j=1 0 k=1

where the integral of the intensity is equal to

/S)\gj)ds _ )\(()J')S_i_ijglz s (1_r<a,ﬁ(8—ﬂgk)))).
0

Ma)



Econometric estimation

After this, we estimate 1 and o from hourly observations, without
jump. The jump size parameters are estimated by maximizing the
log-likelihood of a mixed exponential-Gaussian distribution.

’ MERJD ‘ Non-rough version ‘

~

a | 09061 | B | 1817853 | a B | 221.0378
T | 48.6850 | 7io | 48.9050 | 711 | 107.089 | 71> | 90.60763
Tor | 2.0365 | 7ho | 87.1365 | 7oy | 0.0416 | 7o | 174.0245
X(()l) ng) :\\gl) :\\82)
A | 488.0064 | A2 | 505.8213 | AW | 473.9214 | A2 | 503.2868
Log-lik. Ny £(On) : 28 046.24 Log-lik. N; £(©n) : 28 039.94
p1: 59.4260 pa: -57.8427

Significant difference? 2 (In L(©y) —In E(éﬁﬂ) ~ x? and
p-value=0.0382%



Change of measure

The valuation of derivatives is performed under a risk-neutral
measure Q. Under Q, discounted asset prices are martingales.

The market in our model, is incomplete. We focus on a family of
changes of measure that are induced by exponential martingales of
the form:

1 t t
M, = exp (2/ ¢(5)2d5,/ ga(s)dWs> X
0 0

2 ) t
- Z{ 0+ -5 [ A@ds] ,
=1 :

where ¢(t) is a Fy-adapted process such that fot lp(s)[? ds < oo
and are such that <ooforj=1,2.



Change of measure

Change of measure

For j = 1,2, let us denote by NtQ(j) the counting processes of
intensity )\tQ(J) = jj(Cj))\gj). We define JOU), through their mgfs
under the measure Q:

T (w) =E® (e“ﬂm) = %7121727 (6)

. Q) ;
and processes LS(” = 221;1 J,?(J). Under the measure Q,

2 t
Xe = (,u — %) t— 0’/ o(s)ds + o W2 (7)
0
+ Lf?(/} _ 1 /t )\SQ(J)dS> ,
;( -Z(CJ) 0

where dW = dW, + o(t)dt.



Change of measure

Consequence: the equivalent measures QQ defined by the change of
measure are risk neutral if

, " ,

p—r o NANAC®) (E (eJQ ) _ 1) — 1 fy A ds

p(t) = + :
o = (o

where r is the discount rate.

We evaluate European call options by DFFT and compute their
implied volatility by inverting the Black & Scholes formula.

We use P-parameters of bitcoin with r =0 and set to zero the
Brownian volatility to focus on the jump components of log-return.



Change of measure

So = 100, strikes from 50 to 150 and expiry dates from 1 to 6
months

Call

—— alpha=0.9061
-- alpha'0.95
alpha*1.05

Implied Vol.3M

T T T T T
60 80 100 120 140

Strike K

IV ranges from 61.39% up to 195.58%! Large but relevant with
market data. The BitVol index (30-day implied volatility), evolves
between 60% and 100% with a peak up to 168% on the 17/3/2020.



Conclusions

The rough self and mutually exciting processes are new types of
non-Markov jump process, easy to combine with a diffusion.

Even if the memory kernel diverges at zero, the jump process
remains stable under mild conditions. The MERJD admits an
infinite dimensional Markov representation.

Considering the limit of a finite approximation allows us to retrieve
the Laplace transform of the MERJD.

The DR kernel being a Sonine function, we can define a fractional
operator close to the RL derivative. The Laplace transform of the
MERJD depends on a solution of a fractional differential equation
(FDE) using this new operator. This FDE can be solved
numerically.

More info : A mutually exciting rough jump-diffusion for financial
modelling, Frac. Calc. & Applied An. 27, 2024.
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