Multidimensional linear and nonlinear partial integro-differential equation in Bessel potential spaces with application in option pricing

Daniel Ševčovič

joint work with José Cruz and Cyril Izuchukwu Udeani

Comenius University, Slovakia and University of Lisbon, Portugal

International Conference on Computational Finance 2024 CWI, Amsterdam, 2-5 April 2024

This research has been supported by the APVV-20-0311 project.

- Jump diffusion Lévy processes and Partial integro-differential equations
 - Examples of jump diffusion Lévy processes
 - Partial integro-differential equations
- Existence and uniqueness of solutions to PIDE
 - Sectorial operators and analytic semigroups
 - Bessel potential spaces and their representation
 - Existence and uniqueness of solutions to PIDE in Bessel spaces
- Applications of PIDE in financial modelling
 - Pricing derivative securities under jump diffusion processes

Partial integro-differential equations

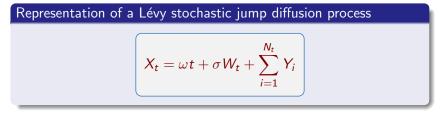
- Examples of linear and nonlinear partial integro-differential equations
- Jump diffusion Lévy processes
- Partial integro-differential equations

Linear partial integro-differential equations

$$\left[\begin{array}{c} \frac{\partial u}{\partial \tau} = L[u], \quad u(0,x) = u^{0}(x), x \in \mathbb{R}^{n}, \tau \in (0,T) \\ \frac{\partial u}{\partial \tau} = \underbrace{\frac{\sigma^{2}}{2}\Delta u}_{\text{Differential part}} + \underbrace{\int_{\mathbb{R}^{n}} \left[u(x+z) - u(x) - z \cdot \nabla u\right] \nu(\mathrm{d}z)}_{\text{Nonlocal integral part}}$$

 $\boldsymbol{\nu}$ is the Lévy measure

Lévy process of jump-diffusion type



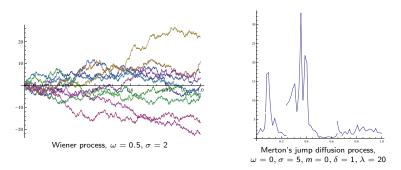
- $\sigma > 0$ is the volatility of the diffusion component, ω is a drift, $\{W_t, t \ge 0\}$, is a Wiener process
- N_t is a Poisson process with intensity λ counting jumps of X_t
- $Y_i, i = 1, 2, \cdots$, are i.i.d. random variables with density f
- the Lévy measure ν is given by λf , i.e. $\nu(dz) = \lambda f(z)dz$
- Finite activity process: $u(\mathbb{R}^n) = \int_{\mathbb{R}^n} \nu(dz) < \infty$
- Infinite activity process: $\nu(\mathbb{R}^n) = \int_{\mathbb{R}^n} \nu(dz) = \infty$

Examples of jump diffusion processes

Merton's jump diffusion process

 $Y_i, i = 1, 2, \cdots$, are normally distributed with the Lévy density:

$$\nu(\mathrm{d} z) = \lambda \frac{1}{(2\pi\delta)^{\frac{n}{2}}} e^{-\frac{\|z-m\|^2}{2\delta^2}} \mathrm{d} z$$



• Finite activity process: $\nu(\mathbb{R}) = \int_{\mathbb{R}} \nu(dx) = \lambda < \infty$ • Finite variation process: $\int_{|x|<1} x\nu(dx) < \lambda m < \infty$ Examples of jump diffusion processes (n = 1)

• The Variance Gamma process is a pure discontinuous process of infinite activity and finite variation with the Lévy measure:

$$u(\mathrm{d}x) = \frac{1}{\kappa|x|} e^{Ax - B|x|} \mathrm{d}x \text{ with } A = \frac{\theta}{\sigma^2} \text{ and } B = \frac{\sqrt{\theta^2 + 2\frac{\sigma^2}{\kappa}}}{\sigma^2}$$

 Normal Inverse Gaussian model is a process of infinite activity and infinite variation without any Brownian component with the Lévy measure: (K_ν is the Bessel function of the 2nd kind)

$$u(\mathrm{d}x) = \frac{C}{|x|} e^{Ax} K_1(B|x|) \mathrm{d}x, \text{ where } B = \frac{\sqrt{\theta^2 + \frac{\sigma^2}{\kappa}}}{\sigma^2}, \ C = \frac{\sqrt{\theta^2 + \frac{\sigma^2}{\kappa}}}{2\pi\sigma\sqrt{\kappa}}$$

PIDE derivation (n = 1)

 The Lévy measure of the process X_t is the mean number of jumps in X_t belonging to a Borel set A,

 $\nu(A) = \frac{1}{T} \mathbb{E} \left[J_X \left([0, T] \times A \right) \right], \quad J_X \left([0, t] \times A \right) = \# \left\{ s \in [0, t] : \Delta X_s \in A \right\}$

• X_t is a combination of a Brownian motion and Poisson processes

$$dX_t = \omega dt + \sigma dW_t + \int_{\mathbb{R}} x J_X (dt, dx), \quad X(0) = 0$$

Infinitesimal generator L[u] of the associated semigroup

$$L[u](x) = \lim_{t \to 0^+} \frac{\mathbb{E}\left[u\left(x + X_t\right)\right] - u\left(x\right)}{t}$$
$$= \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} + \int_{\mathbb{P}} \left[u\left(x + z\right) - u\left(x\right) - \left(e^z - 1\right)\frac{\partial u}{\partial x}\right] \nu(\mathrm{d}z),$$

Existence and uniqueness of solutions to PIDE

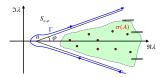
- Sectorial operators and analytic semigroups
- Bessel potential spaces and their representation
- Existence and uniqueness of solutions to PIDE in Bessel spaces

Theory of sectorial operators and analytic semigroups

Definition of a sectorial operator

A closed densely defined linear operator $A: D(A) \subset X \to X$ in a Banach space X is called sectorial iff there exists a sector $S_{a,\phi} = \{\lambda \in \mathbb{C}, \phi \leq \arg(\lambda - a) \leq 2\pi - \phi\}$ and M > 0 such that

$$\|(\mathsf{A}-\lambda)^{-1}\|\leq \mathsf{M}/|\lambda-\mathsf{a}|,\quad orall\lambda\in \mathcal{S}_{\mathsf{a},\phi}\subset\mathbb{C}\setminus\sigma(\mathsf{A})$$



Spectrum $\sigma(A)$ of the operator A

$$e^{-At} = rac{1}{2\pi i} \oint_{\Gamma} e^{-\lambda t} (\lambda - A)^{-1} d\lambda$$

-A is a generator of an analytic semigroup
$$\{e^{-At}, t \ge 0\}$$

• $e^{-At}e^{-As} = e^{-A(t+s)}$
• $\frac{d}{dt}e^{-At} = -Ae^{-At} \Rightarrow \frac{d}{dt}u + Au = 0$, where $u(t) = e^{-At}u(0)$

$$a^{-\gamma} = rac{1}{\Gamma(\gamma)} \int_0^\infty t^{\gamma-1} e^{-at} dt \quad \Longrightarrow \quad A^{-\gamma} = rac{1}{\Gamma(\gamma)} \int_0^\infty t^{\gamma-1} e^{-At} dt$$

The fractional power space X^γ and fractional power operator A^γ

•
$$X^{\gamma} = D(A^{\gamma}) \equiv Rng(A^{-\gamma}) = \{u \in X, u = A^{-\gamma}v, v \in X\}$$

• $||u||_{\gamma} = ||A^{\gamma}u|| = ||v||,$ where $u = A^{-\gamma}v$

• $\|e^{-At}\|_{\gamma} \leq \frac{c}{t^{\gamma}}e^{-at}$ for any t > 0 and $\gamma \geq 0$

Henry's Theorem on existence and uniqueness of abstract equations

- -A generates an analytic semigroup $\{e^{-At}, t \ge 0\}$ in X and the initial condition $U_0 \in X^{\gamma}$ where $0 \le \gamma < 1$,
- F: [0, T] × X^γ → X is Hölder continuous in τ and Lipschitz continuous mapping in U where T > 0.

Then, there exists a unique solution $U \in C([0, T], X^{\gamma}) \cap C^{1}((0, T), X)$

$$\frac{\partial U}{\partial \tau} + AU = F(\tau, U), \qquad U(0) = U_0.$$

Laplace operator as a generator of analytic semigroup

- The Laplace operator −Δ is sectorial in the Banach space
 X = L^p(ℝⁿ) of Lebesgue p-integrable functions for any p ≥ 1
- The domain D(A) is embedded into the Sobolev space $W^{2,p}(\mathbb{R}^n)$
- The fractional power space X^{γ} is the space of Bessel potentials:

$$X^{\gamma} = \mathscr{L}^{p}_{2\gamma}(\mathbb{R}^{n}) := \{ G_{2\gamma} * \varphi, \varphi \in L^{p}(\mathbb{R}^{n}) \}$$

$$G_{2\gamma}(x) = \frac{(4\pi)^{-n/2}}{\Gamma(\gamma)} \int_0^\infty \xi^{-1 + (2\gamma - n)/2} e^{-(\xi + \|x\|^2/(4\xi))} \mathrm{d}\xi$$

where $G_{2\gamma}$ is the Bessel potential function with the Fourier transform $\hat{G}_{2\gamma}(y) = (1 + ||y||^2)^{-\gamma}$

The norm of u = G_{2γ} * φ is given by ||u||_{Xγ} = ||φ||_{L^p}. The fractional power space X^γ is continuously embedded into the fractional Sobolev-Slobodeckii space W^{2γ,p}(ℝⁿ).

Henry, D. (1981). Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York.

Stein, E. M. (1970). Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J.

Fundamental lemma (boundedness of the nonlocal part)

Assume $\nu(dz)$ is an admissible activity Lévy measure, i.e.

 $\nu(\mathrm{d} z) = h(z)\mathrm{d} z, \qquad 0 \leq h(z) \leq C_0 \|z\|^{-\alpha} e^{-D\|z\|},$

for all $z \in \mathbb{R}^n$ and the shape parameters $\alpha < n+2, D > 0$. Suppose that $\gamma \ge 1/2$ and $\gamma > (\alpha - n)/2$. Then the mapping

$$f[u](x) = \int_{\mathbb{R}^n} \left[u(x+z) - u(x) - z \cdot \nabla_x u(x) \right] \nu(\mathrm{d}z)$$

is a bounded linear operator from X^{γ} into $X = L^{p}(\mathbb{R})$.

Existence and uniqueness of solutions to PIDE

The proof of the fundamental lemma is based on:

• representation of $u \in X^\gamma$ and $abla_{ imes} u \in X^{\gamma-1/2}$

 $\nabla_{x}u(x+\theta z)-\nabla_{x}u(x)=[G_{2\gamma-1}(x+\theta z-\cdot)-G_{2\gamma-1}(x-\cdot)]*\varphi(\cdot).$

where $G_{2\gamma-1}$ is the Bessel potential function • convolution inequality

 $\|G * \varphi\|_{L^p} \le \|G\|_{L_q} \|\varphi\|_{L_r},$

where $p, q, r \geq 1$ and 1/p + 1 = 1/q + 1/r

• and Hölder continuity of $G_{2\gamma-1}$

$$\|G_{2\gamma-1}(\cdot+h)-G_{2\gamma-1}(\cdot)\|_{L_1}\leq C_1|h|^{2\gamma-1},$$

$$G_{2\gamma-1}(x) = \frac{(4\pi)^{-n/2}}{\Gamma(\gamma-1/2)} \int_0^\infty \xi^{-1+(2\gamma-1-n)/2} e^{-(\xi+||x||^2/(4\xi))} \mathrm{d}\xi$$

Stein, E. M. (1970). Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J.

Existence and uniqueness of solutions to PIDE

Applying Henry's Theorem on existence and uniqueness of abstract equations we conclude:

Theorem

Assume $\nu(dz)$ is an admissible activity Lévy measure with the shape parameters $\alpha < n + 2$. Let $X^{\gamma} = \mathscr{L}_{2\gamma}^{p}(\mathbb{R})$ be the space of Bessel potentials, that is, the fractional power space of $X = L^{p}(\mathbb{R}^{n}), p \geq 1$, with respect to $A = -\Delta$ where $\frac{1}{2} \leq \gamma < 1$ and $\frac{\alpha - n}{2} < \gamma < 1$. Then, for any T > 0, the linear PIDE

$$\frac{\partial u}{\partial \tau} = \frac{\sigma^2}{2} \Delta u + \int_{\mathbb{R}^n} \left[u(x+z) - u(x) - z \cdot \nabla_x u(x) \right] \nu(\mathrm{d}z)$$

has the unique solution $u \in C([0, T], X^{\gamma}) \cap C^{1}((0, T), X)$ satisfying a given initial condition $u(0, \cdot) = u^{0} \in X^{\gamma}$. Moreover, $u(\tau, \cdot) \in X^{1} = \mathscr{L}_{2}^{p}(\mathbb{R}^{n}) \subseteq W^{2,p}(\mathbb{R}^{n})$ for any $\tau \in (0, T)$.

Applications of PIDE in financial modelling

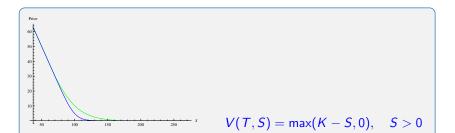
• Pricing derivative securities under jump diffusion processes

Application on pricing securities under Lévy process

In a stylized market the price V(t, S) of a Call or Put option on the asset price S following the Lévy jump diffusion process is a solution to:

Black-Scholes Partial Integro-differential equation

$$\begin{array}{ll} \frac{\partial V}{\partial t} & + & \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV \\ & + & \int_{\mathbb{R}} \underbrace{\left[V(t, Se^y) - V(t, S) - (e^y - 1)S \frac{\partial V}{\partial S}(t, S) \right]}_{>0 \quad \text{if } S \mapsto V(S, t) \quad \text{is convex} \quad \Rightarrow \quad V^{\text{PIDE}}(S, t) > V^{\text{BS}}(S, t) \end{array} \nu(\mathrm{d}y) = 0,$$



Application on pricing securities under Lévy process

The price $V(t, S_1, \dots, S_n)$ of a Call or Put basket option on the asset prices S_i , $i = 1, \dots, n$ following the Lévy jump diffusion process is a solution to:

Black-Scholes Partial Integro-differential equation

$$\begin{aligned} \frac{\partial V}{\partial t} &+ \frac{1}{2} \sum_{i,j=1}^{n} \varrho_{ij} \sigma_i \sigma_j S_i S_j \frac{\partial^2 V}{\partial S_i \partial S_j} + r \sum_{i=1}^{n} S_i \frac{\partial V}{\partial S_i} - rV \\ &+ \int_{\mathbb{R}^n} \left[V(t, S_1 e^{y_1}, \cdots, S_n e^{y_n}) - V(t, S_1, \cdots, S_n) \right. \\ &- \left. \sum_{i=1}^{n} (e^{y_i} - 1) S_i \frac{\partial V}{\partial S_i}(t, S) \right] \nu(\mathrm{d}y) = 0, \end{aligned}$$

Basket option terminal condition

$$V(T, S_1, \cdots, S_n) = \max(K - \sum_{i=1}^n S_i, 0), \quad S > 0$$

The presentation is based on papers

- J. Cruz and D. Ševčovič: On solutions of a partial integro-differential Black-Scholes equation in Bessel potential spaces, Japan Journal of Industrial and Applied Mathematics 37 (2020), 691-721.
- J. Cruz and D. Ševčovič: Option Pricing in Illiquid Markets with Jumps, Applied Mathematical Finance, 25(4), 2018, 389-409.
- D. Ševčovič and C. Udeani: Multidimensional linear and nonlinear partial integro-differential equation in Bessel potential spaces with applications in option pricing, Mathematics 2021, 9(13), 1463.