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Partial integro-differential
equations

Examples of linear and nonlinear partial integro-differential
equations

Jump diffusion Lévy processes

Partial integro-differential equations



Examples of PIDE in the first glance

Linear partial integro-differential equations

∂u

∂τ
= L[u], u(0, x) = u0(x), x ∈ Rn, τ ∈ (0,T )

∂u

∂τ
=

σ2

2
∆u︸ ︷︷ ︸

Differential part

+

∫
Rn

[u(x + z)− u(x)− z · ∇u ] ν(dz)︸ ︷︷ ︸
Nonlocal integral part

ν is the Lévy measure



Lévy process of jump-diffusion type

Representation of a Lévy stochastic jump diffusion process

Xt = ωt + σWt +
Nt∑
i=1

Yi

σ > 0 is the volatility of the diffusion component, ω is a drift,
{Wt , t ≥ 0}, is a Wiener process

Nt is a Poisson process with intensity λ counting jumps of Xt

Yi , i = 1, 2, · · · , are i.i.d. random variables with density f

the Lévy measure ν is given by λf , i.e. ν(dz) = λf (z)dz

Finite activity process: ν(Rn) =
∫
Rn ν(dz) <∞

Infinite activity process: ν(Rn) =
∫
Rn ν(dz) =∞



Examples of jump diffusion processes

Merton’s jump diffusion process
Yi , i = 1, 2, · · · , are normally distributed with the Lévy density:

ν(dz) = λ 1

(2πδ)
n
2
e−
‖z−m‖2

2δ2 dz
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Merton’s jump diffusion process,
ω = 0, σ = 5,m = 0, δ = 1, λ = 20

Finite activity process: ν(R) =
∫
R ν(dx) = λ <∞

Finite variation process:
∫
|x |<1 xν(dx) < λm <∞



Examples of jump diffusion processes (n = 1)

The Variance Gamma process is a pure discontinuous process of
infinite activity and finite variation with the Lévy measure:

ν(dx) = 1
κ|x|e

Ax−B|x|dx with A = θ
σ2 and B =

√
θ2+2σ

2

κ

σ2

Normal Inverse Gaussian model is a process of infinite activity and
infinite variation without any Brownian component with the Lévy
measure: (Kν is the Bessel function of the 2nd kind)

ν(dx) = C
|x|e

AxK1 (B |x |)dx , where B =

√
θ2+σ2

κ

σ2 , C =

√
θ2+σ2

κ

2πσ
√
κ



PIDE derivation (n = 1)

The Lévy measure of the process Xt is the mean number of jumps
in Xt belonging to a Borel set A,

ν(A) = 1
T E [JX ([0,T ]× A)], JX ([0, t]× A) = # {s ∈ [0, t] : ∆Xs ∈ A}

Xt is a combination of a Brownian motion and Poisson processes

dXt = ωdt + σdWt +
∫
R xJX (dt,dx) , X (0) = 0

Infinitesimal generator L[u] of the associated semigroup

L[u](x) = lim
t→0+

E [u (x + Xt)]− u (x)

t

=
σ2

2

∂2u

∂x2
+

∫
R

[
u (x + z)− u (x)− (ez − 1)

∂u

∂x

]
ν(dz),



Existence and uniqueness of
solutions to PIDE

Sectorial operators and analytic semigroups

Bessel potential spaces and their representation

Existence and uniqueness of solutions to PIDE in Bessel spaces



Theory of sectorial operators and analytic semigroups

Definition of a sectorial operator

A closed densely defined linear operator A : D(A) ⊂ X → X in a Banach
space X is called sectorial iff there exists a sector
Sa,φ = {λ ∈ C, φ ≤ arg(λ− a) ≤ 2π − φ} and M > 0 such that

‖(A− λ)−1‖ ≤ M/|λ− a|, ∀λ ∈ Sa,φ ⊂ C \ σ(A)

λℜ

,aS ϕ

λℑ

( )AσΓ
ϕa

Spectrum σ(A) of the operator A

e−At =
1

2πi

∮
Γ
e−λt(λ− A)−1dλ

−A is a generator of an analytic semigroup {e−At , t ≥ 0}

e−Ate−As = e−A(t+s)

d
dt e
−At = −Ae−At ⇒ d

dt u+Au = 0, where u(t) = e−Atu(0)



a−γ =
1

Γ(γ)

∫ ∞
0

tγ−1e−atdt =⇒ A−γ =
1

Γ(γ)

∫ ∞
0

tγ−1e−Atdt

The fractional power space X γ and fractional power operator Aγ

X γ = D(Aγ) ≡ Rng(A−γ) = {u ∈ X , u = A−γv , v ∈ X}

‖u‖γ = ‖Aγu‖ = ‖v‖, where u = A−γv

‖e−At‖γ ≤ C
tγ e
−at for any t > 0 and γ ≥ 0

Henry’s Theorem on existence and uniqueness of abstract equations

−A generates an analytic semigroup
{
e−At , t ≥ 0

}
in X and the

initial condition U0 ∈ X γ where 0 ≤ γ < 1,

F : [0,T ]× X γ → X is Hölder continuous in τ and Lipschitz
continuous mapping in U where T > 0.

Then, there exists a unique solution U ∈ C ([0,T ],X γ) ∩ C 1((0,T ),X )

∂U

∂τ
+ AU = F (τ,U), U(0) = U0.



Laplace operator as a generator of analytic semigroup

The Laplace operator −∆ is sectorial in the Banach space
X = Lp(Rn) of Lebesgue p-integrable functions for any p ≥ 1

The domain D(A) is embedded into the Sobolev space W 2,p(Rn)

The fractional power space X γ is the space of Bessel potentials:

X γ = L p
2γ(Rn) := {G2γ ∗ ϕ, ϕ ∈ Lp(Rn)}

G2γ(x) = (4π)−n/2

Γ(γ)

∫∞
0
ξ−1+(2γ−n)/2e−(ξ+‖x‖2/(4ξ))dξ

where G2γ is the Bessel potential function with the Fourier

transform Ĝ2γ(y) = (1 + ‖y‖2)−γ

The norm of u = G2γ ∗ϕ is given by ‖u‖Xγ = ‖ϕ‖Lp . The fractional
power space X γ is continuously embedded into the fractional
Sobolev-Slobodeckii space W 2γ,p(Rn).

Henry, D. (1981). Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin-New York.

Stein, E. M. (1970). Singular integrals and differentiability properties of functions. Princeton Mathematical Series,
No. 30. Princeton University Press, Princeton, N.J.



Existence and uniqueness of solutions to PIDE

Fundamental lemma (boundedness of the nonlocal part)

Assume ν(dz) is an admissible activity Lévy measure, i.e.

ν(dz) = h(z)dz , 0 ≤ h(z) ≤ C0‖z‖−αe−D‖z‖,

for all z ∈ Rn and the shape parameters α < n + 2,D > 0.
Suppose that γ ≥ 1/2 and γ > (α− n)/2. Then the mapping

f [u](x) =
∫
Rn [u(x + z)− u(x)− z · ∇xu(x)] ν(dz)

is a bounded linear operator from X γ into X = Lp(R).



Existence and uniqueness of solutions to PIDE

The proof of the fundamental lemma is based on:

representation of u ∈ X γ and ∇xu ∈ X γ−1/2

∇xu(x+θz)−∇xu(x) = [G2γ−1(x + θz − ·)− G2γ−1(x − ·)]∗ϕ(·).
where G2γ−1 is the Bessel potential function
convolution inequality

‖G ∗ ϕ‖Lp ≤ ‖G‖Lq‖ϕ‖Lr ,
where p, q, r ≥ 1 and 1/p + 1 = 1/q + 1/r
and Hölder continuity of G2γ−1

‖G2γ−1(·+ h)− G2γ−1(·)‖L1 ≤ C1|h|2γ−1,

G2γ−1(x) = (4π)−n/2

Γ(γ−1/2)

∫∞
0 ξ−1+(2γ−1−n)/2e−(ξ+‖x‖2/(4ξ))dξ

Stein, E. M. (1970). Singular integrals and differentiability properties of functions. Princeton Mathematical Series,
No. 30. Princeton University Press, Princeton, N.J.



Existence and uniqueness of solutions to PIDE

Applying Henry’s Theorem on existence and uniqueness of abstract
equations we conclude:

Theorem

Assume ν(dz) is an admissible activity Lévy measure with the
shape parameters α < n + 2. Let X γ = L p

2γ(R) be the space of
Bessel potentials, that is, the fractional power space of
X = Lp(Rn), p ≥ 1, with respect to A = −∆ where 1

2 ≤ γ < 1 and
α−n

2 < γ < 1.
Then, for any T > 0, the linear PIDE

∂u

∂τ
=
σ2

2
∆u +

∫
Rn

[u(x + z)− u(x)− z · ∇xu(x)] ν(dz)

has the unique solution u ∈ C ([0,T ],X γ) ∩ C 1((0,T ),X )
satisfying a given initial condition u(0, ·) = u0 ∈ X γ . Moreover,
u(τ, ·) ∈ X 1 = L p

2 (Rn) ⊆W 2,p(Rn) for any τ ∈ (0,T ).



Applications of PIDE in
financial modelling

Pricing derivative securities under jump diffusion processes



Application on pricing securities under Lévy process

In a stylized market the price V (t,S) of a Call or Put option on the asset
price S following the Lévy jump diffusion process is a solution to:

Black-Scholes Partial Integro-differential equation

∂V

∂t
+

σ2

2
S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV

+

∫
R

[
V (t,Sey )− V (t,S)− (ey − 1)S

∂V

∂S
(t,S)

]
︸ ︷︷ ︸

>0 if S 7→V (S,t) is convex ⇒ V PIDE (S,t)>V BS (S,t)

ν(dy) = 0,
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Price

V (T ,S) = max(K − S , 0), S > 0

Comparison of solutions to classical Black-Scholes equation and Black-Scholes PIDE Merton equation



Application on pricing securities under Lévy process

The price V (t,S1, · · · ,Sn) of a Call or Put basket option on the asset
prices Si , i = 1, · · · , n following the Lévy jump diffusion process is a
solution to:

Black-Scholes Partial Integro-differential equation

∂V

∂t
+

1

2

n∑
i,j=1

%ijσiσjSiSj
∂2V

∂Si∂Sj
+ r

n∑
i=1

Si
∂V

∂Si
− rV

+

∫
Rn

[
V (t,S1e

y1 , · · · ,Sneyn)− V (t,S1, · · · ,Sn)

−
n∑

i=1

(eyi − 1)Si
∂V

∂Si
(t,S)

]
ν(dy) = 0,

Basket option terminal condition

V (T ,S1, · · · ,Sn) = max(K −
n∑

i=1

Si , 0), S > 0
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