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© Motivation, Challenges and Framework



Setting

Pricing multi-asset options: compute E[P(Xr)]

@ P(-): payoff function (typically non-smooth), e.g., (K: the strike price)

» Basket put P(x) = max(X%, cie® - K,0), s.t. ¢; > 0,58, ¢; = 1;
» Rainbow (E.g., Call on min):
P(x) = max (min (e®,...,e%) - K,0)
» Cash-or-nothing put: P(x) = [1%, 110,x,7(e™).
@ X7 is a d-dimensional (d > 1) vector of log-asset prices at time T,

following a certain multivariate stochastic model with an affine
structure (e.g., Lévy models).

(c) Cash-or-nothing
(a) Basket put (b) Call on min put

Figure 1.1: Payoff functions illustration



Setting

Pricing multi-asset options: compute E[P(X7)]
@ P(-) is a payoff function (typically non-smooth), e.g., (K: the strike price)

» Basket put P(x) = m:ahx(zil cie” = K,0), s.t. ¢; >0, Z‘Z:l ¢ =1;
> Rainbow (E.g., Call on min): P(x) = max (min (e™,...,e") - K,0)
» Cash-or-nothing put: P(x) = 1’1;1:1 1p0,k,7(€%).

@ X7 is a d-dimensional vector of log-asset prices at time 7', following a certain
multivariate stochastic model with an affine structure (e.g., Lévy models).

Challenges
@ Monte Carlo (MC) method (prevalent choice) has a rate of convergence independent of
the problem’s dimension and regularity of the payoff but can be very slow.
@ P(:) is non-smooth = deteriorates convergence of deterministic quadrature.

© The curse of dimensionality and other issues = Most proposed Fourier pricing
approaches efficient for only 1D and 2D options (Carr et al. 1999; Lewis 2001; Fang
et al. 2009; Hurd et al. 2010; Ruijter et al. 2012),....
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Pricing multi-asset options: compute E[P(X7)]
@ P(-) is a payoff function (typically non-smooth), e.g., (K: the strike price)
» Basket put P(x) = max(Y%, c;e” - K,0), s.t. ¢;>0,5% ¢ = 1;

» Rainbow (E.g., Call on min): P(x) = max (min (e*',...,e"*) - K,0)
» Cash-or-nothing put: P(x) =17, 10, ,1(€™).

@ X7 is a d-dimensional vector of log-asset prices at time 7', following a certain
multivariate stochastic model with an affine structure (e.g., Lévy models).

Challenges
@ Monte Carlo (MC) method (prevalent choice) has a rate of convergence independent of
the problem’s dimension and regularity of the payoff but can be very slow.
© P(-) is non-smooth = deteriorates convergence of deterministic quadrature.

© The curse of dimensionality and other issues = Most proposed Fourier pricing
approaches efficient for only 1D and 2D options (Carr et al. 1999; Lewis 2001; Fang
et al. 2009; Hurd et al. 2010; Ruijter et al. 2012),....

Aim: Empower Fourier-based pricing methods of multi-asset options

@ C. Ben Hammouda et al. “Optimal Damping with Hierarchical Adaptive Quadrature for
Efficient Fourier Pricing of Multi-Asset Options in Lévy Models”. In: Journal of
Computational Finance 27.3 (2024), pp. 43-86. (Michael’s talk)

@ C. Ben Hammouda et al. “Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset
Options”. In: arXiv preprint arXiv:2403.02832 (2024). (Today’s talk)




Numerical Integration Methods: Sampling in [0, 1]?

E[P(X(T)] = faa P(X)pxz (x)dx » Ty win P (Xm).

Monte Carlo (MC) Quasi-Monte Carlo (QMC)
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Fast Convergence: When Regularity Meets
Structured Sampling

Monte Carlo (MC) Quasi-Monte Carlo (QMC)

e Optimal Convergence: O(M™1)
(Dick et al. 2013).

@ Requires the integrability of

first mixed partial derivatives
of the integrand.

@ (-) Slow convergence:
O(M™2).

e (+) Rate independent of
dimension and regularity

of the integrand.
o Worst Case Convergence:

O(M~112),
Tensor Product Quadrature Adaptive Sparse Grids Quadrature
e Convergence: O(M~1) e Convergence: O(M_g) (Chen
(Davis et al. 2007). 2018).
@ r >0 being the order of e p>1 is related to the order of
bounded total bounded weighted mixed
derivatives of the (partial) derivatives of the

integrand. | integrand.



Challenge 1: Original problem is non smooth (low regularity)

(a) Basket Put  (b) Call on min Cash-or-nothing

Solution: Uncover the available hidden regularity in the
problem

@ Analytic smoothing (Bayer et al. 2018; Ben Hammouda et al.
2020): taking conditional expectations over subset of integration
variables. ® Good choice not always trivial.

@ Numerical smoothing (Ben Hammouda et al. 2022):
® Additional computational work! Attractive when explicit smoothing or
Fourier mapping not possible.

© Mapping the problem to the Fourier space (Today’s talk)
(Ben Hammouda et al. 2024b; Ben Hammouda et al. 2024c).

A\ Fourier transform of the density function (characteristic function)

available/cheap to compute.



Better Regularity in the Fourier Space

i
i

(a) Payoff:
Cash-or-nothing (b) Fourier Transform

(a) Payoff: Call on min  (b) Fourier Transform



Fourier Pricing Formula in d Dimensions

©,,,,0,: the model and payoff parameters, respectively;
P(-): the Fourier transform of the payoff P(-);

°
°
@ Xy vector of log-asset prices at time T', with extended characteristic function ®x..(-);
°
°

R: vector of damping parameters ensuring integrability;

dp: strip of regularity of P(-); dx: strip of regularity of Dx.(+),

Assumption 1.1

@ x ~ P(x) is continuous on R? (Can be replaced by more reqularity assumptions on
the model).

0 ip={ReR¥:z > B2 P(z) e L} (R?) andy ~» P(y +iR) e L'(RY)} # @.

Q dx={ReR¥:yr|bx, (y+iR)|< o,V y R} # &.

Proposition (Ben Hammouda et al. 2024Db)

Under Assumptions 1, 2 and 8, and for R € dy = dp N dx, the value of the option price on
d stocks is
V(®n, 0p) = ¢ TE[P(X1)] (1)

- /R L (2m) e TR (@x, (v +iR)P(y +iR))dy.

=g(¥;R.©m,0))




Challenge 2: The choice of the damping parameters

Damping parameters, R, ensure integrability and control the
regularity of the integrand.

Figure 1.6: Example of a strip of analyticity of the integrand of a 2D call
on min option under VG model. Parameters:
6=(-0.3,-0.3),vr=0.5%=1I5.

Ry

30 g
-300 -25.0 -200 -150 -100 5.0 0.0 5.0 10.0
Ry

300 250 200 -150 -10.0 -50 00 50  10.0
Ry

(a) o = (0.2,0.2) (b) & = (0.2,0.5)



Challenge 2: The choice of the damping parameters

Damping parameters, R, ensure integrability and control the
regularity of the integrand.

Solution: and Michael’s talk

Based on contour integration error estimates:
Parametric smoothing of the Fourier integrand via an (generic)
optimization rule for the choice of damping parameters.

Near-Optimal Damping Rule (Ben Hammouda et al. 2024b)

We propose an optimization rule for choosing the damping parameters
R":=R"(0,,0,) = argmin |[g(y; R, 0,,,0,)
Redy

= argmin ¢(Ora; R, 9,,,0,). (2
Redy

~—

where R* := (R}, ..., R}) denotes the optimal damping parameters.




Challenge 3: Curse of dimensionality

@ Most of the existing Fourier approaches face hurdles in
high-dimensional settings due to the tensor product (TP) structure of
the commonly employed numerical quadrature techniques.

@ Complexity of (standard) TP quadrature to solve (1) ~ exponentially
with the number of underlying assets (Recall Convergence: O(M™4)).

=

untime

2 3 a B 6 7 8

Figure 1.7: Call on min option under Normal Inverse Gaussian model: Runtime (in sec)
versus dimension for TP for a relative error TOL = 1072,
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@ Most of the existing Fourier approaches face hurdles in
high-dimensional settings due to the tensor product (TP) structure of
the commonly employed numerical quadrature techniques.

© Complexity of (standard) TP quadrature to solve (1) ~ exponentially
with the number of underlying assets (Recall Convergence: O(M™4)).

=

untime

Figure 1.7: Call on min option under Normal Inverse Gaussian model: Runtime (in sec)
versus dimension for TP for a relative error TOL = 1072,

Solution: Effective treatment of the high dimensionality

© (Ben Hammouda et al. 2024b): Sparsification and dimension-adaptivity
techniques to accelerate convergence (Michael’s talk).

© (Ben Hammouda et al. 2024¢): Quasi-Monte Carlo (QMC) with efficient
domain transformation (Today’s talk).




© Quasi-Monte Carlo with Effective Domain transformation for Fast
Fourier Pricing



Quasi-Monte Carlo (QMC):
Need for Domain Transformation

Recall: our Fourier integrand is:
g(y;R) = (2r) de TR (<I>xT (y + iR)P(y + iR)) ,yeRY Redy:=dpnix

@ Our Fourier integrand is in R BUT QMC constructions are restricted
to the generation of low-discrepancy point sets on [0,1]%.

= Need to transform the integration domain
o Using an inverse cumulative distribution function, we obtain the value of

the option price on d stocks:

go U ' (wA)
®,.,0 :f d :f g9°% W) g
V( )= |, 9(y)dy ot po T T (w A)

| ——
=g(w;A)

» 9(;; A): a probability density function (PDF) with parameters A.
» U(+;A): the corresponding cumulative distribution function (CDF).



Randomized Quasi-Monte Carlo (RQMC)

o The transformed integration problem reads now:

_1 .
goU (u;A) du.
(0,14 o W (u;A)
[ —
=g(w;A)

V(0,,0,) =



Randomized Quasi-Monte Carlo (RQMC)

o The transformed integration problem reads now:

go \I/_l(u;A)
J- - 57 du.
[0.1]7 o U-l(u; A) " ®)
[ —
=:G(wA)

V(0,,0,) =

e Once the choice of ¥(; A) (respectively W 1(-; A)) is determined,
the RQMC estimator of (3) can be expressed as follows:

nel) e Ly LS (u:a) @
N,s S &N n )

» {un}2 is the sequence of deterministic QMC points
» Forn=1,...,N, {ugf)}f:l: obtained by an appropriate

randomization of {u,}2_;, such that {uﬁf)};zl o U([0,1]%).



Randomized Quasi-Monte Carlo (RQMC)

o The transformed integration problem reads now:

go U '(uwA)
LA S k20 1T
[0.1]7 o U-l(u; A) " )
[ —
=:G(wA)

V(0,,0,) =

e Once the choice of ¥(; A) (respectively W 1(-; A)) is determined,
the RQMC estimator of (3) can be expressed as follows:

nel) e Ly LS (u:a) @
N,s S &N n )

» {un}2 is the sequence of deterministic QMC points
» Forn=1,...,N, {qu)}f:l: obtained by an appropriate
randomization of {u,}2_;, such that {ugf)};l o U([0,1]%).

n=1»

e Why Randomization?
» Practical error estimates based on the central limit theorem.



Challenge 4: Deterioration of QMC convergence if ¢
or/and A are badly chosen

e Observe: The denominator of g(u) = iovl(u;A)

T I(wA) decays to 0 as

uj - 0,1for j=1,...,d.

@ The transformed integrand may have singularities near the
boundary of [0, 1]d = Deterioration of QMC convergence.
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(a) Original Fourier integrand (1) (b) Domain transformation for
for call option under GBM the integrand (1)

Questions

Q1: Which density to choose? Q2: How to choose its parameters?




How to choose 9(+; A) (respectively W=1(-;A) ) and
and its parameters, A7

For u € [0, 1]d, R € by, the transformed Fourier integrand reads:

_ oo goUTi(wA)
M= o u T
(2m)¢

%[P(\If‘l(u) piy T (V) + iR)]

¢ (¥ (u))



How to choose 9(+; A) (respectively W=1(-;A) ) and
and its parameters, A7

For u € [0, 1]d, R € by, the transformed Fourier integrand reads:

_ oo goUTi(wA)
g(u) - 1/)0\11‘1(u,A)
e m[ﬁ(w-l(u) vigy 2 (0100 “R)]
(2m) ¥ (T (u))

= Sufficient to design the domain transformation to control the growth
Dx, (U (u)+iR)

ST w) (Conservative choice).

at the boundaries of the term

o The payoff Fourier transforms (P(-)) decay at a polynomial rate.

e PDFs of the pricing models (light and semi-heavy tailed models), if
they exist, are much smoother than the payoff = the decay of their
Fourier transforms (charactersitic functions) is faster the one of the
payoff Fourier transform (Trefethen 1996; Cont et al. 2003).



Model-dependent Domain Transformation

Solution : Effective Domain Transformation

@ Choose the density ¢(+;A) to asymptotically follow the same functional form of the
characteristic function.

Table 1: Extended characteristic function: ®x,.(2) = exp (iz' X ) exp (iz'uT) dx,. (z), and choice of ¥ (-).

¢x,(2),2¢CT, J[z] e bx V(Y A),y eRY
Gaussian (A = X):

GBM model: oxp(—gz’Ez) _ .

(@m) % (det(E) texp (-1 ('S )

Generalized Student’s t (A = (17,2)):

. e ol

VG model: (1 —ivz'6+ %7/z’2z)7l/u F(T?(;# ( (y Ey))
L)zt

NIG model: Laplace (A =) and (v=239):

exp (5T (Va2 AR~ /o>~ (B+iz)A(B+12))) (%)7%@6“%)),%(yr%—ly)%KU( /Zy,i—Ty)

Notation:

o X: Covariance matrix for the Geometric Brownian Motion (GBM) model.
v,0,0,3: Variance Gamma (VG) model parameters.

a, 3,0, A: Normal Inverse Gaussian (NIG) model parameters.

p is the martingale correction term.

K, (+): the modified Bessel function of the second kind.



Model-dependent Domain Transformation:
Case of Independent Assets

; -1 .
b (U (w)HR) g g)xi’_(\b (uj)+iR;)

Using independence: Observe Cimy = i — Sy

Solution : Effective Domain Transformation

@ Choose the density ¥ (:; A) in the change of variable to asymptotically follow the same
functional form of the extended characteristic function.

@ Select the parameters A to control the growth of the integrand near the boundary of
[0,1]% i.e limy, 0,1 §(uj) < 00,5 =1,...,d.

Table 2: Choice of ¢(u; A) := H?Zl ;(uj; A) and conditions on A for GBM, (ii) VG and (iii) NIG.
See (Ben Hammouda et al. 2024c) for the derivation.

Model 1, (yj; A) Growth condition on A
2
1 Y = 1
GBM WGXP(_ZGJ/Q) (Gaussian) Gj > T
r(st) (1 12 )7@“)/2 t-Stud t) p<2l _q
=2 |1+ =L -Studen <=--1,
VG om0 (%) 765" ( I o vo?i oo v
5]- :( 27 ) (&)m
151
exp(-5- 1
NIG — (Laplace) 02 55

/\ In case of equality conditions, the integrand still decays at the speed of the payoff transform.



Should Correlation Be Considered
in the Domain Transformation?
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Figure 2.2: Two-dimensional call on the minimum option under the GBM model:
Effect of the correlation parameter, p, on the convergence of RQMC.

For the domain transformation, we set 6; = ﬁ =5,7=1,2. N: number of QMC
oj

points; S = 32: number of digital shifts.



Model-dependent Domain Transformation:
Case of Correlated Assets

Challenge 5: Numerical Evaluation of the inverse CDF ¥~1(-)

@ We can not evaluate the inverse CDF componentwise using the univariate inverse
CDF as in the independent case (U;!(u) # (U7 (u1), ..., U7l (uq))).

© The inverse CDF is not given in closed-form for most multivariate distributions,
and its numerical approximation is generally computationally expensive.




Model-dependent Domain Transformation:
Case of Correlated Assets

Challenge 5: Numerical Evaluation of the inverse CDF ¥~1(-)

@ We can not evaluate the inverse CDF componentwise using the univariate inverse
CDF as in the independent case (U;!(u) # (U7 (u1), ..., U7l (uq))).

© The inverse CDF is not given in closed-form for most multivariate distributions,
and its numerical approximation is generally computationally expensive.

Q Observe: For GBM model: If Z ~ N'(0,I) = X = LZ ~ N (0 2) (L: Cholesky factor
of E) = we have \Ilnm a(w E) L\Ilmrd(u; I;) = L( norl(ul) norl(ud))

Solution: Avoid the expensive computation of the inverse CDF

@ We consider multivariate transformation densities, 1(-, A), which belong to the
class of normal mean-variance mixture distributions; i.e., for X ~ ¢ (-, A), we can
write X = p + WZ, with Z ~ Ny(0,X), and W > 0, independent of Z.

© We use the eigenvalue or Cholesky decomposition to eliminate the dependence
structure.




Illustration

o GBM model : Using L\I/nord(u I;)=L (‘I’nom(ul) nom(ud))
(L: Cholesky factor of X), we obtain

fRdg(y)dy: [[ (L\Il;wrd(u§1d)) du,

1 gmor (L3 (i 1))

@ VG model: © Observe: If Z ~ N (0,%),Y ~ x%(?) =
X =7 x % ~t4(7,0,%), with Z,Y independent
= we obtain (see Proposition 3.4 in (Ben Hammouda et al. 2024c))
Lwl (wla)

+o00
du- [ f
fRd g(u) v 0 0,1]¢ 1/} nor,d
stu NG

» 14(7,0,%): generalized t-student distribution.
, py( ): density of x*(#) (chi-squared) distribution.
L: Cholesky factor of o x X

L, a(uila)
VY

)du py (y)dy



Model-dependent Domain Transformation:
Case of Correlated Assets

Solution : Effective Domain Transformation

@ Choose the density ¢ (-; A) in the change of variable to asymptotically follow the
same functional form of the extended characteristic function.

@ Select the parameters A to control the growth of the integrand near the boundary
of [0,1]% i.e limy, 0,1 §(u;) <00, =1,....d.

Table 3: Choice of ¢(u;A) := l'[']i:1 ;(uz; A) and conditions on A for GBM, (ii) VG and (iii) NIG.
See (Ben Hammouda et al. 2024c) for the derivation.

Model | ¥(y;A) Growth condition on A
GBM | Gaussian: (27T)’g(det(f}))’% exp (—%(y’i_]y)) Ts-5 "0
) e . DB (det(3)” Ly -5 2T
VG Generalized Student’s t: 2 ) T (1 + = (y Zy)) v==2--d, and
INEA 22 ~—
: =-3"x0
or
U< % —d, and
$=3!
~ r"’l 3 ~ ~—
NIG | Laplace (v = 25%): (27) 7% (det()) (!‘Efy)2 K, (\/Qy’E 1y) ST2A 25" 50




[Mustration: Case of Correlated Assets

1073

Relative Statistical Error

107*

104

Figure 2.3: Two-dimensional call on the minimum option under the GBM model:
Effect of the correlation parameter, p, on the convergence of RQMC. N: number of
QMC points; S = 32: number of digital shifts.



© Numerical Experiments and Results



Effect of Domain Transformation on
RQMC Convergence

Figure 3.1: Call option under the NIG model: Effect of the parameter & of the
Laplace PDF on

(a) the shape of the transformed integrand g(u) and

(b) convergence of the relative statistical error of RQMC

N: number of QMC points; S = 32: number of digital shifts.

Boundary growth condition: ¢ > T%s =5.



Effect of Domain Transformation on
RQMC Convergence

§(u)
-
&

Figure 3.2: Call option under the VG model: Effect of the parameter 7 of the
t-student PDF on

(a) the shape of the transformed integrand g(u) and

(b) convergence of the RQMC error

N: number of QMC points; S = 32: number of digital shifts.

Boundary growth condition: v < % -1=9



RQMC In Fourier Space vs MC in Physical Space

Figure 3.3: Average runtime in seconds with respect to relative tolerance
levels TOL: Comparison of RQMC in the Fourier space (with optimal
damping parameters and appropriate domain transformation) and MC in the
physical space.

—— MC P
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.
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10t 102

(a) 6D-VG call on min (b) 6D-NIG call on min



Comparison of the Different Methods

Figure 3.4: Call on min option: Runtime (in sec) versus dimensions to reach
a relative error, TOL = 1072, RQMC in the Fourier space (with optimal
damping parameters and appropriate domain transformation), TP in the
Fourier space with optimal damping parameters, and MC in the physical
space.
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@ Conclusion



o

2]

Conclusion

We empower Fourier pricing methods of multi-asset options by
employing QMC with an appropriate domain transformation.

We desing a practical (model dependent) domain transformation

strategy that prevents singularities near boundaries, ensuring the
integrand retains its regularity for faster QMC convergence in the
Fourier space.

The designed QMC-based Fourier pricing approach outperforms
the MC (in physical domain) and tensor product quadrature (in
Fourier space) for pricing multi-asset options across up to 15
dimensions.

Accompanying code for the paper can be found here:
Git repository: Quasi-Monte-Carlo-for-Efficient-Fourier-Pricing-of-
Multi-Asset-Options


https://github.com/Michael-Samet/Quasi-Monte-Carlo-for-Efficient-Fourier-Pricing-of-Multi-Asset-Options
https://github.com/Michael-Samet/Quasi-Monte-Carlo-for-Efficient-Fourier-Pricing-of-Multi-Asset-Options
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