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Raúl
Tempone

The International Conference on Computational Finance, CWI
Amsterdam, April 3, 2024

0



1 Motivation, Challenges and Framework

2 Quasi-Monte Carlo with Effective Domain transformation for Fast
Fourier Pricing

3 Numerical Experiments and Results

4 Conclusion

0



Setting

Pricing multi-asset options: compute E[P (XT )]

P (⋅): payoff function (typically non-smooth), e.g., (K: the strike price)

▸ Basket put P (x) =max(∑di=1 ciexi −K,0), s.t. ci > 0,∑di=1 ci = 1;
▸ Rainbow (E.g., Call on min):
P (x) =max (min (ex1 , . . . , exd) −K,0)

▸ Cash-or-nothing put: P (x) = ∏di=1 1[0,Ki](exi).
XT is a d-dimensional (d ≥ 1) vector of log-asset prices at time T ,
following a certain multivariate stochastic model with an affine
structure (e.g., Lévy models).
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Figure 1.1: Payoff functions illustration
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Setting

Pricing multi-asset options: compute E[P (XT )]

P (⋅) is a payoff function (typically non-smooth), e.g., (K: the strike price)

▸ Basket put P (x) =max(∑di=1 ciexi −K,0), s.t. ci > 0,∑di=1 ci = 1;
▸ Rainbow (E.g., Call on min): P (x) =max (min (ex1 , . . . , exd) −K,0)
▸ Cash-or-nothing put: P (x) = ∏di=1 1[0,Ki](exi).

XT is a d-dimensional vector of log-asset prices at time T , following a certain
multivariate stochastic model with an affine structure (e.g., Lévy models).

Challenges

1 Monte Carlo (MC) method (prevalent choice) has a rate of convergence independent of
the problem’s dimension and regularity of the payoff but can be very slow.

2 P (⋅) is non-smooth ⇒ deteriorates convergence of deterministic quadrature.

3 The curse of dimensionality and other issues ⇒ Most proposed Fourier pricing
approaches efficient for only 1D and 2D options (Carr et al. 1999; Lewis 2001; Fang
et al. 2009; Hurd et al. 2010; Ruijter et al. 2012),. . . .

Aim: Empower Fourier-based pricing methods of multi-asset options

1 C. Ben Hammouda et al. “Optimal Damping with Hierarchical Adaptive Quadrature for
Efficient Fourier Pricing of Multi-Asset Options in Lévy Models”. In: Journal of
Computational Finance 27.3 (2024), pp. 43–86. (Michael’s talk)

2 C. Ben Hammouda et al. “Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset
Options”. In: arXiv preprint arXiv:2403.02832 (2024). (Today’s talk)
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Numerical Integration Methods: Sampling in [0,1]2

E [P (X(T ))] = ∫Rd P (x)ρXT
(x)dx ≈ ∑Mm=1 ωmP (xm).

Monte Carlo (MC)
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Quasi-Monte Carlo (QMC)
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Fast Convergence: When Regularity Meets
Structured Sampling

Monte Carlo (MC)

(-) Slow convergence:

O(M− 1
2 ).

(+) Rate independent of
dimension and regularity
of the integrand.

Tensor Product Quadrature

Convergence: O(M− r
d )

(Davis et al. 2007).

r > 0 being the order of
bounded total
derivatives of the
integrand.

Quasi-Monte Carlo (QMC)

Optimal Convergence: O(M−1)
(Dick et al. 2013).

Requires the integrability of
first mixed partial derivatives
of the integrand.

Worst Case Convergence:
O(M−1/2).

Adaptive Sparse Grids Quadrature

Convergence: O(M−
p
2 ) (Chen

2018).

p > 1 is related to the order of
bounded weighted mixed
(partial) derivatives of the
integrand.

3



Challenge 1: Original problem is non smooth (low regularity)
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Solution: Uncover the available hidden regularity in the
problem

1 Analytic smoothing (Bayer et al. 2018; Ben Hammouda et al.
2020): taking conditional expectations over subset of integration
variables. / Good choice not always trivial.

2 Numerical smoothing (Ben Hammouda et al. 2022):
/ Additional computational work! Attractive when explicit smoothing or

Fourier mapping not possible.

3 Mapping the problem to the Fourier space (Today’s talk)
(Ben Hammouda et al. 2024b; Ben Hammouda et al. 2024c).
" Fourier transform of the density function (characteristic function)

available/cheap to compute. 4



Better Regularity in the Fourier Space
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Fourier Pricing Formula in d Dimensions

Notation

Θm,Θp: the model and payoff parameters, respectively;

P̂ (⋅): the Fourier transform of the payoff P (⋅);
XT : vector of log-asset prices at time T , with extended characteristic function ΦXT

(⋅);
R: vector of damping parameters ensuring integrability;

δP : strip of regularity of P̂ (⋅); δX : strip of regularity of ΦXT
(⋅),

Assumption 1.1

1 x↦ P (x) is continuous on Rd (Can be replaced by more regularity assumptions on
the model).

2 δP ∶= {R ∈ Rd ∶ x↦ e−⟨R,x⟩P (x) ∈ L1
bc(R

d) and y ↦ P̂ (y + iR) ∈ L1(Rd)} ≠ ∅.

3 δX ∶= {R ∈ Rd ∶ y ↦∣ ΦXT
(y + iR) ∣< ∞,∀ y ∈ Rd} ≠ ∅.

Proposition (Ben Hammouda et al. 2024b)

Under Assumptions 1, 2 and 3, and for R ∈ δV ∶= δP ∩ δX , the value of the option price on
d stocks is

V (Θm,Θp) = e−rTE[P (XT)] (1)

= ∫
Rd
(2π)−de−rTR (ΦXT

(y + iR)P̂ (y + iR))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=g(y;R,Θm,Θp)

dy.
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Challenge 2: The choice of the damping parameters

Damping parameters, R, ensure integrability and control the
regularity of the integrand.

Figure 1.6: Example of a strip of analyticity of the integrand of a 2D call
on min option under VG model. Parameters:
θ = (−0.3,−0.3), ν = 0.5,Σ = I2.
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Challenge 2: The choice of the damping parameters

Damping parameters, R, ensure integrability and control the
regularity of the integrand.

Solution: (Ben Hammouda et al. 2024b) and Michael’s talk

Based on contour integration error estimates:
Parametric smoothing of the Fourier integrand via an (generic)

optimization rule for the choice of damping parameters.

Near-Optimal Damping Rule (Ben Hammouda et al. 2024b)

We propose an optimization rule for choosing the damping parameters

R∗ ∶=R∗(Θm,Θp) = argmin
R∈δV

∥g(u;R,Θm,Θp)∥∞

= argmin
R∈δV

g(0Rd ;R,Θm,Θp). (2)

where R∗ ∶= (R∗1 , . . . ,R∗d) denotes the optimal damping parameters.
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Challenge 3: Curse of dimensionality

1 Most of the existing Fourier approaches face hurdles in
high-dimensional settings due to the tensor product (TP) structure of
the commonly employed numerical quadrature techniques.

2 Complexity of (standard) TP quadrature to solve (1) ↗ exponentially
with the number of underlying assets (Recall Convergence: O(M− r

d )).
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Figure 1.7: Call on min option under Normal Inverse Gaussian model: Runtime (in sec)
versus dimension for TP for a relative error TOL = 10−2.

Solution: Effective treatment of the high dimensionality

1 (Ben Hammouda et al. 2024b): Sparsification and dimension-adaptivity
techniques to accelerate convergence (Michael’s talk).

2 (Ben Hammouda et al. 2024c): Quasi-Monte Carlo (QMC) with efficient
domain transformation (Today’s talk).
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Quasi-Monte Carlo (QMC):
Need for Domain Transformation

Recall: our Fourier integrand is:

g (y;R) = (2π)−de−rTR (ΦXT
(y + iR)P̂ (y + iR)) , y ∈ Rd, R ∈ δV ∶= δP ∩ δX

Our Fourier integrand is in Rd BUT QMC constructions are restricted
to the generation of low-discrepancy point sets on [0,1]d.

⇒ Need to transform the integration domain

Using an inverse cumulative distribution function, we obtain the value of
the option price on d stocks:

V (Θm,Θp) = ∫
Rd
g(y)dy = ∫

[0,1]d

g ○Ψ−1(u;Λ)
ψ ○Ψ−1(u;Λ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶g̃(u;Λ)

du.

▸ ψ(⋅;Λ): a probability density function (PDF) with parameters Λ.
▸ Ψ(⋅;Λ): the corresponding cumulative distribution function (CDF).

10



Randomized Quasi-Monte Carlo (RQMC)
The transformed integration problem reads now:

V (Θm,Θp) = ∫
[0,1]d

g ○Ψ−1(u;Λ)
ψ ○Ψ−1(u;Λ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶g̃(u;Λ)

du. (3)

Once the choice of ψ(⋅;Λ) (respectively Ψ−1(⋅;Λ)) is determined,
the RQMC estimator of (3) can be expressed as follows:

QRQMC
N,s [g̃] ∶= 1

S

S

∑
i=1

1

N

N

∑
n=1

g̃ (u(s)n ;Λ) , (4)

▸ {un}Nn=1 is the sequence of deterministic QMC points
▸ For n = 1, . . . ,N , {u(s)n }Ss=1: obtained by an appropriate

randomization of {un}Nn=1, such that {u(s)n }Ss=1
i.i.d∼ U([0,1]d).

Why Randomization?
▸ Practical error estimates based on the central limit theorem.
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Challenge 4: Deterioration of QMC convergence if ψ
or/and Λ are badly chosen

Observe: The denominator of g̃(u) = g○Ψ−1(u;Λ)
ψ○Ψ−1(u;Λ) decays to 0 as

uj → 0,1 for j = 1, . . . , d.
The transformed integrand may have singularities near the
boundary of [0,1]d ⇒ Deterioration of QMC convergence.
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(a) Original Fourier integrand (1)
for call option under GBM
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(b) Domain transformation for
the integrand (1)

Questions

Q1: Which density to choose? Q2: How to choose its parameters?
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How to choose ψ(⋅;Λ) (respectively Ψ−1(⋅;Λ) ) and
and its parameters, Λ?

For u ∈ [0,1]d,R ∈ δV , the transformed Fourier integrand reads:

g̃(u) = g ○Ψ
−1(u;Λ)

ψ ○Ψ−1(u;Λ)

= e−rT

(2π)d
R
⎡⎢⎢⎢⎣
P̂ (Ψ−1(u) + iR)

ΦXT
(Ψ−1(u) + iR)
ψ (Ψ−1(u))

⎤⎥⎥⎥⎦
.

⇒ Sufficient to design the domain transformation to control the growth

at the boundaries of the term
ΦXT

(Ψ−1(u)+iR)
ψ(Ψ−1(u)) (Conservative choice).

The payoff Fourier transforms (P̂ (⋅)) decay at a polynomial rate.

PDFs of the pricing models (light and semi-heavy tailed models), if
they exist, are much smoother than the payoff ⇒ the decay of their
Fourier transforms (charactersitic functions) is faster the one of the
payoff Fourier transform (Trefethen 1996; Cont et al. 2003).
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Model-dependent Domain Transformation

Solution (Ben Hammouda et al. 2024c): Effective Domain Transformation

1 Choose the density ψ(⋅; Λ) to asymptotically follow the same functional form of the
characteristic function.

Table 1: Extended characteristic function: ΦXT
(z) = exp (iz′X0) exp (iz′µT )ϕXT

(z), and choice of ψ(⋅).

ϕXT
(z),z ∈ Cd, I[z] ∈ δX ψ(y;Λ),y ∈ Rd

Gaussian (Λ = Σ̃):

GBM model: exp (−T
2
z′Σz)

(2π)− d
2 (det(Σ̃))− 1

2 exp (− 1
2
(y′Σ̃

−1
y))

Generalized Student’s t (Λ = (ν̃, Σ̃)):

VG model: (1 − iνz′θ + 1
2
νz′Σz)−T /ν Γ( ν̃+d2 )(det(Σ̃))

− 1
2

Γ( ν̃2 )ν̃
d
2 π

d
2

(1 + 1
ν̃
(y′Σ̃y))

− ν̃+d
2

NIG model: Laplace (Λ = Σ̃) and (v = 2−d
2
):

exp (δT (
√
α2 −β′∆β −

√
α2 − (β + iz)′∆(β + iz))) (2π)− d

2 (det(Σ̃))− 1
2 (y

′Σ̃−1y
2
)

v
2

Kv (
√

2y′Σ̃
−1
y)

Notation:

Σ: Covariance matrix for the Geometric Brownian Motion (GBM) model.
ν,θ,σ,Σ: Variance Gamma (VG) model parameters.
α,β, δ,∆: Normal Inverse Gaussian (NIG) model parameters.
µ is the martingale correction term.
Kv(⋅): the modified Bessel function of the second kind.
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Model-dependent Domain Transformation:
Case of Independent Assets

Using independence: Observe
ϕXT

(Ψ−1(u)+iR)
ψ(Ψ−1(u)) = ∏dj=1

ϕ
X

j
T

(Ψ−1(uj)+iRj)

ψj(Ψ−1(uj))

Solution (Ben Hammouda et al. 2024c): Effective Domain Transformation

1 Choose the density ψ(⋅;Λ) in the change of variable to asymptotically follow the same
functional form of the extended characteristic function.

2 Select the parameters Λ to control the growth of the integrand near the boundary of
[0,1]d i.e limuj→0,1 g̃(uj) < ∞, j = 1, . . . , d.

Table 2: Choice of ψ(u;Λ) ∶= ∏dj=1 ψj(uj ;Λ) and conditions on Λ for GBM, (ii) VG and (iii) NIG.
See (Ben Hammouda et al. 2024c) for the derivation.

Model ψj(yj ;Λ) Growth condition on Λ

GBM
1

√
2σ̃j

2
exp(− y2j

2σ̃j
2 ) (Gaussian) σ̃j ≥ 1

√
Tσj

VG

Γ( ν̃+12
)

√
ν̃πσ̃jΓ(

ν̃
2
)
(1 + y2j

ν̃σ̃j
2 )
−(ν̃+1)/2

(t-Student) ν̃ ≤ 2T
ν
− 1,

σ̃j = (
νσ2

j ν̃

2
)

T
ν−2T
(ν̃) ν

4T−2ν

NIG

exp(−
∣yj ∣
σ̃j
)

2σ̃j
(Laplace) σ̃j ≥ 1

δT

" In case of equality conditions, the integrand still decays at the speed of the payoff transform.
14



Should Correlation Be Considered
in the Domain Transformation?

104

NxS

10−4

10−3

10−2

10−1
Re

la
ti

ve
 S

ta
ti

st
ic

al
 E

rr
or

ρ= −0.7
N−0.99

ρ=0
N−1.48

ρ=0.7
N−0.69

Figure 2.2: Two-dimensional call on the minimum option under the GBM model:
Effect of the correlation parameter, ρ, on the convergence of RQMC.
For the domain transformation, we set σ̃j =

1√
Tσj
= 5, j = 1,2. N : number of QMC

points; S = 32: number of digital shifts.
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Model-dependent Domain Transformation:
Case of Correlated Assets

Challenge 5: Numerical Evaluation of the inverse CDF Ψ−1(⋅)
1 We can not evaluate the inverse CDF componentwise using the univariate inverse

CDF as in the independent case (Ψ−1d (u) ≠ (Ψ
−1
1 (u1), . . . ,Ψ−11 (ud))).

2 The inverse CDF is not given in closed-form for most multivariate distributions,
and its numerical approximation is generally computationally expensive.

� Observe: For GBM model: If Z ∼ N(0,Id) ⇒X = L̃Z ∼ N(0, Σ̃) (L̃: Cholesky factor
of Σ̃) ⇒ we have Ψ−1nor,d(u; Σ̃) = L̃Ψ−1nor,d(u;Id) = L̃ (Ψ

−1
nor,1(u1), . . . ,Ψ−1nor,1(ud))

Solution: Avoid the expensive computation of the inverse CDF

1 We consider multivariate transformation densities, ψ(⋅,Λ), which belong to the
class of normal mean-variance mixture distributions; i.e., for X ∼ ψ(⋅,Λ), we can
write X = µ +WZ, with Z ∼ Nd(0,Σ), and W ≥ 0, independent of Z.

2 We use the eigenvalue or Cholesky decomposition to eliminate the dependence
structure.
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Illustration

GBM model : Using L̃Ψ−1nor,d(u;Id) = L̃ (Ψ−1nor,1(u1), . . . ,Ψ−1nor,1(ud))
(L̃: Cholesky factor of Σ̃), we obtain

∫
Rd
g(y)dy = ∫

[0,1]d

g (L̃Ψ−1nor,d(u;Id))

ψnor (L̃Ψ−1nor,d(u;Id))
du,

VG model: � Observe: If Z ∼ N(0, Σ̃), Y ∼ χ2(ν̃) ⇒
X = Z ×

√
ν̃

√
Y
∼ td(ν̃,0, Σ̃), with Z, Y independent

⇒ we obtain (see Proposition 3.4 in (Ben Hammouda et al. 2024c))

∫
Rd
g(u)du = ∫

+∞

0

⎛
⎜⎜⎜
⎝
∫
[0,1]d

g ( L̃⋅Ψ
−1
nor,d(u;Id)
√
y

)

ψstu (
L̃⋅Ψ−1

nor,d
(u;Id)

√
y

)
du

⎞
⎟⎟⎟
⎠
ρY (y)dy

▸ td(ν̃,0, Σ̃): generalized t-student distribution.
▸ ρY (⋅): density of χ2(ν̃) (chi-squared) distribution.
▸ L̃: Cholesky factor of ν̃ × Σ̃
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Model-dependent Domain Transformation:
Case of Correlated Assets

Solution (Ben Hammouda et al. 2024c): Effective Domain Transformation

1 Choose the density ψ(⋅;Λ) in the change of variable to asymptotically follow the
same functional form of the extended characteristic function.

2 Select the parameters Λ to control the growth of the integrand near the boundary
of [0,1]d i.e limuj→0,1 g̃(uj) < ∞, j = 1, . . . , d.

Table 3: Choice of ψ(u;Λ) ∶= ∏dj=1 ψj(uj ;Λ) and conditions on Λ for GBM, (ii) VG and (iii) NIG.
See (Ben Hammouda et al. 2024c) for the derivation.

Model ψ(y;Λ) Growth condition on Λ

GBM Gaussian: (2π)−
d
2 (det(Σ̃))−

1
2 exp (−1

2(y
′Σ̃
−1
y)) TΣ − Σ̃−1 ⪰ 0

VG Generalized Student’s t:
Γ( ν̃+d

2
)(det(Σ̃))−

1
2

Γ( ν̃
2
)ν̃

d
2 π

d
2

(1 + 1
ν̃
(y′Σ̃y))−

ν̃+d
2 ν̃ = 2T

ν − d, and

Σ − Σ̃−1 ⪰ 0
or
ν̃ ≤ 2T

ν − d, and

Σ̃ =Σ−1

NIG Laplace (v = 2−d
2 ): (2π)−

d
2 (det(Σ̃))−

1
2 (y

′Σ̃−1y
2 )

v
2

Kv (
√

2y′Σ̃
−1
y) δ2T 2∆ − 2Σ̃−1 ⪰ 0
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Illustration: Case of Correlated Assets
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Figure 2.3: Two-dimensional call on the minimum option under the GBM model:
Effect of the correlation parameter, ρ, on the convergence of RQMC. N : number of
QMC points; S = 32: number of digital shifts.
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Effect of Domain Transformation on
RQMC Convergence
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Figure 3.1: Call option under the NIG model: Effect of the parameter σ̃ of the
Laplace PDF on
(a) the shape of the transformed integrand g̃(u) and
(b) convergence of the relative statistical error of RQMC
N : number of QMC points; S = 32: number of digital shifts.
Boundary growth condition: σ̃ ≥ 1

Tδ
= 5.
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Effect of Domain Transformation on
RQMC Convergence

0.0 0.2 0.4 0.6 0.8 1.0
u

−5

0

5

10

15

20

25

30

35

g̃(
u)

̃ ̃ν = 3.0
̃ ̃ν = 9.0
̃ ̃ν = 15.0

(a)

103 104

NxS

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Re
la

ti
ve

 S
ta

ti
st

ic
al

 E
rr

or

 ̃ν = 3.0
N−3.05

 ̃ν = 9.0
N−1.35

 ̃ν = 15.0
N−0.66

(b)

Figure 3.2: Call option under the VG model: Effect of the parameter ν̃ of the
t-student PDF on
(a) the shape of the transformed integrand g̃(u) and
(b) convergence of the RQMC error
N : number of QMC points; S = 32: number of digital shifts.
Boundary growth condition: ν̃ ≤ 2T

ν
− 1 = 9
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RQMC In Fourier Space vs MC in Physical Space

Figure 3.3: Average runtime in seconds with respect to relative tolerance
levels TOL: Comparison of RQMC in the Fourier space (with optimal
damping parameters and appropriate domain transformation) and MC in the
physical space.
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Comparison of the Different Methods

Figure 3.4: Call on min option: Runtime (in sec) versus dimensions to reach
a relative error, TOL = 10−2. RQMC in the Fourier space (with optimal
damping parameters and appropriate domain transformation), TP in the
Fourier space with optimal damping parameters, and MC in the physical
space.
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Conclusion

1 We empower Fourier pricing methods of multi-asset options by
employing QMC with an appropriate domain transformation.

2 We desing a practical (model dependent) domain transformation
strategy that prevents singularities near boundaries, ensuring the
integrand retains its regularity for faster QMC convergence in the
Fourier space.

3 The designed QMC-based Fourier pricing approach outperforms
the MC (in physical domain) and tensor product quadrature (in
Fourier space) for pricing multi-asset options across up to 15
dimensions.

4 Accompanying code for the paper can be found here:
Git repository: Quasi-Monte-Carlo-for-Efficient-Fourier-Pricing-of-
Multi-Asset-Options
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