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Motivation

1 Already existing literature on semi-static variance-optimal hedging, see
Di Tella et al. 2019, Di Tella et al. 2020, but gap in research concerning
models with self-exciting jumps.

2 Introduction of new financial derivatives, e.g. variance swaps −→ necessity of
studying hedging strategies in richer and more realistic models.

3 Interest in risk-management of variance swaps in the context of energy
markets: speculation on volatility fluctuations on commodities markets (Gold,
Oil, Natural Gas).
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The model
Let (Ω, F , P) be a probability space, where P is the risk-neutral measure.

Log-price dynamics

Let X be the log-price of a stock, S = eX ,

dXt =

(
− 1

2
Vt − (e𝛾+𝛿2/2 − 1)𝜆t

)
dt +

√︁
VtdW

(1)
t + d

( Nt∑︁
i=1

𝜂Xi

)
, X0 = x0 ∈ R

dVt = 𝛽v (𝛼v − Vt )dt + 𝜎v

√︁
VtdW

(2)
t , V0 = v0 > 0

d𝜆t = 𝛽𝜆 (𝛼𝜆 − 𝜆t ) dt + d
( Nt∑︁
i=1

𝜂𝜆i

)
, 𝜆0 = 𝜆0 > 0.

The log-price is given by a jump-diffusion dynamics.
The volatility V is a CIR process (Heston-like volatility)

d⟨W (1) ,W (2) ⟩t = 𝜌 ∈ [−1, 1], 𝛼v , 𝛽v , 𝜎v > 0, 2𝛼v 𝛽v ≥ 𝜎2
v .

𝜆 is the intensity of a Hawkes process N: self-excitation

𝛼𝜆, 𝛽𝜆 > 0, 𝜂Xi ∼ N(𝛾, 𝛿2), i .i .d , 𝜂𝜆i ∼ Exp(𝜁), i .i .d .
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The model
Motivations

Empirical studies have shown the presence of “jump clustering” in different
markets: equities, see Äıt-Sahalia et al. 2015, commodities, see Filimonov et
al. 2014, energy, see Herrera and González 2014.

Especially in commodity markets, “At least 60-70 % of commodity price
changes are now due to self-generated activities rather than novel
information”, Filimonov et al. 2014.

Similar models have already been proposed in Brignone et al. 2023, in the
context of commodities.
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The model
Properties

The model is a generalization of the Heston model: when 𝜆 ≡ 0, our model
coincides with Heston’s.

Under appropriate conditions on the parameters, the price S = eX is a
square-integrable martingale.

The model is affine, i.e., it is a Markov process and its Laplace function is
exponentially-affine in the current state:

E[eu⊤ (XT ,VT ,𝜆T ) |Ft ] = exp(Φ(u,T − t) + Ψ(u,T − t)⊤ (Xt ,Vt , 𝜆t )),

where (Ft )t∈[0,T ] is the right continuous filtration such that (X ,V , 𝜆) is
adapted −→closed formula for the Laplace transform.
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The hedging problem
Target and contingent claims

Target claim: Variance swap, financial derivative used to hedge or speculate
on the magnitude of a price movement of an underlying asset.

𝜂0T = [X ,X ]T − k ,

where k is the so-called swap rate, i.e., k = E[[X ,X ]T ] so that E[𝜂0T ] = 0
and the contract is zero at inception.

The set of contingent claims used to hedge is a basket 𝜂𝜂𝜂 = (𝜂1, . . . , 𝜂d ) of
European options written on S .
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Variance swaps in energy markets

Variance swaps contracts are commonly traded in equity markets (S&P
index), but a remarkable interest has grown in recent years also in
commodity markets.

The recent developments occurred in both Oil and Natural Gas prices
evolution stressed the need of accurate and reliable hedging strategies against
market wild volatility fluctuations.

Literature on variance swaps in energy markets: Prokopczuk et al. 2017,
Swishchuk 2013, Carr and Corso 2001, Trolle and Schwartz 2010.
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Hedging problem
General setting

(Ω, F , P) probability space, where P is the risk-neutral measure.

E[·] denotes the expectation under the risk neutral probability P.

[0,T ] fixed time interval, T > 0.

S models the price process of a tradable asset.

S ∈ L2 (P) (square-integrable) and it is a martingale.

Ingredients for hedging

A target claim 𝜂0 ∈ L2 (P), which we want to hedge (e.g. variance swap).

Fixed basket of contingent claims 𝜂𝜂𝜂 := (𝜂1, . . . , 𝜂d ), 𝜂j ∈ L2 (P) for
j = 1, . . . , d (e.g. European options).
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The hedging problem
Semi-static variance-optimal hedging problem

Semi-static variance-optimal hedging

A semi-static variance-optimal hedge is (𝜗, 𝜈𝜈𝜈) ∈ L2 (S) × Rd with initial capital c
of claim 𝜂0 is solution of the minimization problem

𝜀2 = min
𝜈𝜈𝜈∈Rd ,𝜗∈L2 (S ) ,c∈R

E


©­­­­­«

c −

cost of the static part︷  ︸︸  ︷
E[𝜈𝜈𝜈⊤𝜂𝜂𝜂] +

∫ T

0
𝜗s dSs︸        ︷︷        ︸

dynamic position

−𝜂0 −

static position︷︸︸︷
𝜈𝜈𝜈⊤𝜂𝜂𝜂 )

ª®®®®®¬

2
,

where L2 (S) :=
{
𝜗 predictable: E

[∫ T
0

|𝜗t |2 d ⟨S , S⟩t
]
< ∞

}
.
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𝜀2 (𝜈𝜈𝜈) = min𝜗∈L2 (S ) ,c∈R E


©­­­« c − E[𝜈𝜈𝜈⊤𝜂𝜂𝜂] +

∫ T
0

𝜗s dSs − (

inner pb target claim︷     ︸︸     ︷
𝜂0 − 𝜈𝜈𝜈⊤𝜂𝜂𝜂)

ª®®®¬
2

(inner)

𝜀2 = min𝜈𝜈𝜈∈Rd 𝜀
2 (𝜈𝜈𝜈) (outer)

,

where L2 (S) :=
{
𝜗 predictable: E

[∫ T
0

|𝜗t |2 d ⟨S , S⟩t
]
< ∞

}
.

Inner problem is a classic variance-optimal hedging problem, Föllmer and
Sondermann 1986 they solve it in the dynamic case.

Outer problem is a finite-dimensional quadratic optimization problem.
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How to solve the problem?
Galtchouk-Kunita–Watanabe decomposition

Fully dynamic variance-optimal hedging

Consider a fully dynamic variance-optimal hedging problem for a claim Y and a
stock price S :

𝜀2 = min
𝜗∈L2 (S ) ,c∈R

E


(
c +

∫ T

0
𝜗s dSs − YT

)2 .
If both Y and S are square-integrable martingales, the variance-optimal
hedging problem is solved by the Galtchouk-Kunita–Watanabe decomposition
(𝜗, L)

Y· =

initial capital︷︸︸︷
c +

∫ ·

0
𝜗t︸︷︷︸

investment strategy

dSt

︸           ︷︷           ︸
hedgeable risk

+

residual unheadgeable risk︷︸︸︷
L· .

where L is a local martingale orthogonal to S .
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How to solve the problem?
General hedging strategies

Theorem 2.3, Di Tella et al. 2020

Let (𝜗j , Lj ) are the GKW decomposition of 𝜂j with respect to S for j = 0, . . . , d ,
then the hedging problem is

𝜀2 (𝜈𝜈𝜈) = min𝜗∈L2 (S ) ,c∈R E
[(
c − E[𝜈𝜈𝜈⊤𝜂𝜂𝜂] +

∫ T
0

𝜗s dSs − (𝜂0 − 𝜈𝜈𝜈⊤𝜂𝜂𝜂)
)2]

(inner)

𝜀2 = min𝜈𝜈𝜈∈Rd A − 2𝜈𝜈𝜈⊤B + 𝜈𝜈𝜈⊤C𝜈𝜈𝜈 (outer)

where A := E[⟨L0, L0⟩T ],B j := E[⟨L0, Lj ⟩T ],C ij := E[⟨Li , Lj ⟩T ], i , j = 1, . . . , d .

Under a non-redundancy condition, C is invertible and the unique hedging
strategy is given by

𝜈𝜈𝜈∗ = C −1B , 𝜗∗ = 𝜗0 −
d∑︁
j=1

𝜈∗j 𝜗
j , c∗ = E[𝜂0]

and the heging error by
𝜀2 (𝜈𝜈𝜈∗) = A − BTC −1B .
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How to compute 𝜗, A, B , C?
Practical steps

1 Combine GKW decomposition and Fourier representation of the claims.
▶ Consider a claim YT having payoff h(XT ), then its payoff can be written as

h(x) =
∫
S(R )

exp(u⊤x)𝜁 (du)

for S(R) = {R + iy , y ∈ R}, 𝜁 (du) := 1
2𝜋i ĥ(u)du, where ĥ(u) is the

Laplace-transform of h.

European Calls. h(x) = (ex − K )+, ĥ(u) = 1
2𝜋i

K 1−u

u (u−1) , R > 1.

▶ Instead of the GKW decomposition of 𝜂j , consider (𝜗(u), L(u)), u ∈ C, the
GKW decomposition of E[euX |Ft ] ∈ L2 (P). Following Di Tella et al. 2019, one
can write for i , j = 1, . . . , d

𝜗j =

∫
S(Rj )

𝜗(u) 𝜁 j (du), B j =

∫ T

0

∫
S(Rj )

E[⟨L0, L(uj )⟩t ]𝜁 j (duj )dt,

C i ,j =

∫ T

0

∫
S(Ri )

∫
S(Rj )

E[⟨L(ui ), L(uj )⟩t ]𝜁 j (duj )𝜁 i (dui )dt .
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2 Exploit the results in Di Tella et al. 2019, Corollary 3.1, where they obtain
semi-explicit expressions for

𝜗0, 𝜗j , ⟨L0, L0⟩t , ⟨L0, L(u)⟩t , ⟨L(u), L(u)⟩t ,

in the case of affine models.
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Hedging strategy
Computations in our setting

1 Instead of the contingent claims 𝜂j consider the Laplace-transform
E[euXT |Ft ], for u ∈ C.

Proposition 1

Given u = (u1, u2, u3) ∈ D ⊆ C3, the conditional Laplace transform of
(XT ,VT , 𝜆T ) given the Ft , is given by:

E[exp (u1XT + u2VT + u3𝜆T ) |Ft ]
= exp (𝜙(T − t, u) + u1Xt + 𝜓(T − t, u)Vt + 𝜒(T − t, u)𝜆t )

where
𝜕𝜙

𝜕t (t, u) = 𝛼v 𝛽v𝜓(t, u) + 𝛼𝜆𝛽𝜆𝜒(t, u), 𝜙(0, u) = 0,
𝜕𝜓

𝜕t (t, u) = − 1
2u1 +

1
2u

2
1 − 𝛽v𝜓(t, u) + 𝜌𝜎vu1𝜓(t, u) + 1

2𝜎
2
v𝜓(t, u)2, 𝜓(0, u) = u2,

𝜕𝜒

𝜕t (t, u) = −𝛽𝜆𝜒(t, u) − (e𝛾+𝛿2/2 − 1)u1 + e𝛾u1+𝛿
2u2

1/2 𝜁

𝜁 −𝜒 (t ,u) − 1, 𝜒(0, u) = u3.
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2 Exploit the results in Di Tella et al. 2019, Corollary 3.1 and the combination
of GKW decomposition and Fourier representation.

𝜗

𝜗0t =
𝜆t

St− (Vt + 𝜅𝜆t )
F (t)

𝜗
j
t =

∫
S(Rj )

1

St− (Vt + 𝜅𝜆t )

(
ft− (uj )G1 (t) + ft− (uj )𝜆tG2 (t)

)
𝜁 j (duj ),

where 𝜅 constant and ft− (uj ) = e𝜙T−t (uj ,0,0)+ujXt−+𝜓T−t (uj ,0,0)Vt−+𝜒T−t (uj ,0,0)𝜆t− with

F ,G1,G2 deterministic functions of t, uj and of the model’s parameters
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A,B ,C

A =

∫ T

0
A1 (t)E

[
V 2
t

Vt + 𝜆t 𝜅

]
+ A2 (t)E

[
𝜆tVt

Vt + 𝜆t 𝜅

]
+ A3 (t)E

[
𝜆2t

Vt + 𝜆t 𝜅

]
dt,

B j =

∫ T

0

∫
S(Rj )

B1 (t, uj )E
[
ft− (uj )𝜆tVt

Vt + 𝜆t 𝜅

]
+ B2 (t, uj )E

[
ft− (uj )𝜆2t
Vt + 𝜆t 𝜅

]
𝜁 j (duj )dt,

C i ,j =

∫ T

0

∫
S(Ri )

∫
S(Rj )

C1 (t, uj , ui )E
[
ft− (ui )ft− (uj )V 2

t

Vt + 𝜆t 𝜅

]
+ C2 (t, uj , ui )E

[
ft− (ui )ft− (uj )𝜆tVt

Vt + 𝜆t 𝜅

]
+ C3 (t, uj , ui )E

[
ft− (ui )𝜆tVt

Vt + 𝜆t 𝜅

]
+ C4 (t, uj , ui )E

[
ft− (uj )𝜆tVt

Vt + 𝜆t 𝜅

]
+ C5 (t, uj , ui )E

[
ft− (ui )ft− (uj )𝜆2t

Vt + 𝜆t 𝜅

]
𝜁 j (dui )𝜁 j (duj )dt,

where 𝜅 constant and ft− (uj ) = e𝜙T−t (uj ,0,0)+ujXt−+𝜓T−t (uj ,0,0)Vt−+𝜒T−t (uj ,0,0)𝜆t− with

Ai ,Bi ,Ci deterministic functions of t, ui , uj and of the model’s parameters.
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Applications to energy markets
In progress

In energy markets variance swaps are typically defined on Futures contracts
−→ To hedge a variance swap in energy markets, we need to consider a basket
of contingent claims written on Futures.

Let F (t,T1) be the t-price of a Futures contract with maturity T1 > 0, we
can assume that log F (t,T1) follows the same dynamics of Xt −→ The
previous analysis on the hedging strategies remains the same also in the case
of options written on Futures.
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Applications to energy markets
In progress

1 Calibrate our model parameters on the prices of options written on Futures
for a chosen commodity (e.g. crude oil).

X0 𝛾 𝛿 𝜌 V0 𝛼v 𝛽v 𝜎v 𝜆0 𝛼𝜆 𝛽𝜆 𝜁

4.605 -0.0099 0.0296 -0.7163 0.0242 0.0175 6.7272 0.6872 7.2448 3.8283 8.8334 0.34

Data on crude oil, Brignone et al. 2023

2 Compute numerically the hedging strategy.
▶ Computation of E[euX |Ft ] −→ computation of the solution of the Riccati
system (uncoupled system of complex ODEs) −→ numerical complex ODEs
solver.

▶ Computation of the expected values in A,B ,C
⋆ distributions are not known −→ Monte Carlo methods.
⋆ model can be simulated quite accurately, see Brignone et al. 2023 −→ lower error.

▶ Integral computation of A,B ,C :

A) any quadrature method.
B, C) need to truncate the unbounded integration domain S(Rj ) = {Rj + iy , y ∈ R}

properly.
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Applications in energy markets
In progress

A =

∫ T

0
A1 (t)E

[
V 2
t

Vt + 𝜆t𝜅

]
+ A2 (t)E

[
𝜆tVt

Vt + 𝜆t𝜅

]
+ A3 (t)E

[
𝜆2t

Vt + 𝜆t𝜅

]
dt

Figure: Expectations of
V 2
t

Vt+𝜆t 𝜅 ,
𝜆tVt

Vt+𝜆t 𝜅 ,
𝜆2
t

Vt+𝜆t 𝜅 , respectively, for t ∈ [0, 1].
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Future numerical investigations

We also aim at investigating the following questions:

If a semi-static strategy is actually better than a fully dynamic one, in our
specific model.

Optimal selection of static hedging assets: How many assets are enough to
obtain a “reasonably small” hedging error? And which asset in the market
should be chosen?
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Thank you!

carlo.sgarra@uniba.it
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