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Introduction

Our problem: Determine the optimal investment strategies of one agent and (a large
group of agents) having CRRA utilities under relative performance concerns.

There is a strategic interaction between the agent and the group which is caused by
their relative performances.

We solve two classical Merton problems to determine what the group does and the
agent’s optimal strategy relative to the group’s performance.

There are some studies which revealed the significance of the relative performance
concerns on human behaviors, see for instance [3] and [5].

In our framework, the stock price is defined on jump-diffusion markets where we
both consider the upward and downward jumps in the numerical observations.
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Basak and Makarov [1] work on a portfolio choice problem with a competition
between two risk-averse portfolio managers where the stock follows geometric
Brownian motion.

Espinosa and Touzi [4] consider n interacting agents maximizing the difference
between an agent’s wealth and average wealth of other agents’ wealth.

Lacker and Zariphopoulou [7] work on an optimal portfolio management problem for
interacting n interacting agents with both CARA and CRRA utilities. They obtain
equilibrium strategies for both n agents and mean-field games.

Lacker and Soret [6] extend the CRRA model developed by Lacker and
Zariphopoulou [7] for a continuous time-dependent problem including relative
performances.

Reis and Platonov [8] develop equilibrium strategies using forward utilities of CARA
type.

Bäuerle and Göll [2] obtain Nash equilibrium investment strategies under the
strategic interactions of n agents investigating the influence of the price impact on
the equilibrium.
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Our work is both an extension and a special case of the paper Lacker and
Zariphopoulou [7] in the following directions:

(i) We simplify their mean-field equilibrium results by considering only one agent and a
group of agents.

(ii) In our framework, the stock price is followed in a jump-diffusion market as follows:

dSt = St

(
µdt+ νdWt + σdBt − εdNt − ε̃dÑt

)
with constant parameters µ, ν, σ > 0; the constant jump sizes ε, ε̃; two independent
standard Brownian motions Wt and Bt and two independent Poisson processes Nt and
Ñt.

(iii) Moreover, we assume that the agents in the market are homogeneous in their
risk-aversions and relative performances as a special case.

(iv) The model is an extension in the sense that we allow for jumps in the market.
However, it is a special case because we only consider the mean-field equilibrium, not
the n-agent equilibrium.
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Framework

We define a complete probability space (Ω,F ,P) with a sample space Ω, a filtration
F = {Ft}0≤t≤T and a probability measure P.
The agent and the group trade using self-financing strategies πt and π̂t which
represent the optimal proportional allocations in the portfolio, respectively.

We assume that the financial market includes one riskless asset and one risky asset
for the agent to invest at times t ∈ [0, T ]. The price process of the riskless asset
follows the dynamics,

dS0
t = rS0

t dt

with a constant interest rate r ≥ 0. We assume for simplicity that r = 0.
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The process of the risky asset is generated in a jump-diffusion market as follows:

dSt = St

(
µdt+ νdWt + σdBt − εdNt − ε̃dÑt

)
Along with the agents, there exists a group that invests in a different risky asset,
which is also generated in a jump-diffusion market as follows:

dŜt = Ŝt

(
µ̂dt+ σ̂dBt − ε̂dNt

)
with constant parameters µ̂, σ̂ > 0, and a constant jump size ε̂ ∈ R.
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Let X and Y denote the wealth of the agent and the group. We suppose that they
are generated by the dynamics,

dXt = πtXt

(
µdt+ νdWt + σdBt − εdNt − ε̃dÑt

)
,

X0 = x0; (1)

dYt = π̂tYt

(
µ̂dt+ σ̂dBt − ε̂dNt

)
,

Y0 = y0. (2)
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In this setup,

(i) µ, µ̂ are the constant drift parameters;

(ii) ν, σ, σ̂ > 0 are the constant volatility parameters;

(iii) Wt and Bt are independent standard Brownian motions; W is an idiosyncratic noise
and B is the common noise;

(iv) ε, ε̃, ε̂ are the constant jump sizes;

(v) Nt and Ñt are two independent Poisson processes with the constant intensities λ and
λ̃, respectively;

(vi) the allocations π and π̂ determine the proportion of the agent’s wealth and the group’s
wealth, respectively.

B. Aydoğan (RWTH Aachen University) Optimal Investment Strategies under the Relative Performance in Jump-Diffusion MarketsApril 2, 2024 9 / 43



Optimal control problem for the agent

The utility function of the agent:

U(X,Y ) =
1

1− γ

(
XY −θ

)1−γ

(3)

where γ > 0, γ ̸= 1 is the risk-aversion of the agent and 0 ≤ θ ≤ 1 specifies the
influence from the group’s performance through Y on the utility of the agent.

Some comments on the utility function:
When θ = 0, the group’s performance does not impact the agent’s performance.
When θ = 1, the utility function (3) is

U(X,Y ) =
1

1− γ

(
X

Y

)1−γ

,

such that the utility is gained from a direct relative performance between the agent
and the group.
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The stochastic optimal control problem of the agent:

w(x, y, t) = sup
π∈A

E [U(X(T ), Y (T )) | X0 = x, Y0 = y]

= sup
π∈A

E
[

1

1− γ

(
X(T )Y −θ(T )

)1−γ
∣∣∣∣X0 = x, Y0 = y

]
, (4)

where A is the set of strategies, called admissible, such that (1) has a solution and
(4) is finite.

When we solve the problem, we always solve for π, which is constant, such that the
conditions for admissibility hold trivially.

The Hamilton-Jacobi-Bellman (HJB) equation:

0 =wt + µ̂yπ̂wy +
1

2
σ̂2y2π̂2wyy + sup

π∈A

{
π (µxwx + σσ̂xyπ̂wxy) +

1

2

(
v2 + σ2

)
π2x2wxx

+ λ
(
w(x− πxε, y − π̂yε̂, t)− w(x, y, t)

)
+ λ̃

(
w(x− πxε̃, y, t)− w(x, y, t)

)}
(5)

for (x, y, t) ∈ R+ × R+ × [0, T ] with the final condition

w(x, y, T ) =
1

1− γ

(
xy−θ

)1−γ

.
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The ansatz w(x, y, t) = g(t) 1
1−γ

(
xy−θ

)1−γ
yields the ODE

g′(t) + ρ̃g(t) = 0

where

ρ̃ = −µ̂π̂θ(1− γ)−
1

2
σ̂2π̂2θ(θγ − θ − 1)(1− γ)

+ sup
π∈A

{
µπ(1− γ)− σσ̂π̂θ(1− γ)2π −

1

2
(ν2 + σ2)π2γ(1− γ)

+λ

((
(1− πε)(1− π̂ε̂)−θ

)1−γ
− 1

)
+ λ̃

(
(1− πε̃)1−γ − 1

)}
.

The resulting equation for π:

µ− σσ̂π̂θ(1− γ)− (ν2 + σ2)πγ − λ(1− πε)−γε(1− π̂ϵ̂)−θ(1−γ) − λ̃(1− πε̃)−γ ε̃ = 0.
(6)
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Considering the equation (6) as a function of π, i.e., f(π) = 0, the existence and
uniqueness of the solution can be proved depending on the parameters.

Therefore, we guarantee the existence and uniqueness of a solution if the parameters
are set, and we avoid the discontinuity points.

Remark

While the above result is about the general uniqueness and existence results, it is also
worth highlighting our particular cases. In all our numerical examples, in each case, we
put specific parameters equal to 0 to linearize the equation (6) and isolate π. Therefore,
we do not need to check the general theory in these cases because we find explicitly a
single solution.
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Optimal strategies of the agent:

Remember that the resulting equation for π is

µ− σσ̂π̂θ(1− γ)− (ν2 + σ2)πγ − λ(1− πε)−γε(1− π̂ϵ̂)−θ(1−γ) − λ̃(1− πε̃)−γ ε̃ = 0.

1 The pure diffusion case (ε = ε̃ = 0):

π∗ =

1
γ
µ− σσ̂π̂θ( 1

γ
− 1)

v2 + σ2
(7)

where 1
γ
is defined as the risk-tolerance parameter of the agent.

The mean field equilibrium strategy builds on the idea that the group above consists of
many agents, each corresponding to the agent above. Thus, the agent’s performance
is measured relative to a group of many agents to which she belongs.
By many, we mean, in principle, infinitely many such that the influence on the group’s
performance from every single agent is negligible.
This means that, in the limit, the agent’s performance does not influence the group’s
performance. Still, the group’s performance influences the performance of the
individual via the parameter θ.
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We discuss this result in relation to certain results achieved by Lacker and
Zariphopoulou [7] where they obtain a Mean Field Equilibrium strategy under
relative performances.

Lemma

Assuming that the agent has the optimal strategy π given by (7), we recover the Mean
Field Equilibrium strategy in Lacker and Zariphopoulou [7].

Proof.

The Mean Field Equilibrium strategy formula in Lacker and Zariphopoulou [7] reads

π∗ = δ · µ

σ2 + v2
− θ(δ − 1)

σ

σ2 + v2
· φ

1 + ψ
, (8)

where the constants φ and ψ are defined as

φ := E

[
δ

µσ

σ2 + ν2

]
and ψ := E

[
θ(δ − 1)

σ2

σ2 + ν2

]
,

the expectations are essentially averages over individuals in their mean-field
approach and δ = 1/γ.
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Proof (Cont.)

Multiply both sides of (7) by σ to obtain

σπ∗ =

1
γ
µσ

v2 + σ2
−
σ2σ̂π̂θ( 1

γ
− 1)

v2 + σ2
. (9)

We now take the average over all group agents on both sides. This operation is
essentially the ’mean-field’ part of the ’mean-field equilibrium’. On the right-hand
side, the expressions φ and ψ appear in the following expression

E

[ 1
γ
µσ

ν2 + σ2

]
− E

[
σ2σ̂π̂θ( 1

γ
− 1)

ν2 + σ2

]
= ψ + σ̂π̂φ.

We now set the average over products of volatilities and investment proportions,
E[σπ∗], equal to the corresponding group product σ̂π̂,

σ̂π̂ = E[σπ∗].

This operation is essentially the ’equilibrium’ part of the ’mean-field equilibrium’.

Now, equating two sides and solving for σ̂π̂ gives us

σ̂π̂ =
ψ

1 + φ
.

Plugging that back into (7) gives exactly Equation (8) in Lacker and
Zariphopoulou [7].
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Single stock case:

Lemma

Assume that µ̂ = µ, σ̂ = σ and v = 0. Then, the optimal strategy reads as

π∗ =
µ

σ2

 1

γ
−

E
[
1
γ

]
1 + E

[
θ
(

1
γ
− 1
)]θ( 1

γ
− 1

) . (10)

Proof.

When µ̂ = µ, σ̂ = σ and v = 0, (7) simplifies to

π∗ =
1

γ

µ

σ2
− π̂θ

(
1

γ
− 1

)
. (11)
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Proof (Cont.)

Averaging over both sides gives

π̂ = E
[
1

γ

]
µ

σ2
− π̂E

[
θ

(
1

γ
− 1

)]
.

Solved for π̂ gives

π̂ =
E
[
1
γ

]
µ
σ2

1 + E
[
θ
(

1
γ
− 1
)] .

Then, plugged into π∗ in (11) gives us (10).
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Figure 1: Optimal strategy π∗ with the common parameters µ = 5, σ = 1 in the single stock
case. Left: π∗ in Lacker and Zariphopoulou [7] versus θ̄ = E[θ] and δ = 1

γ
with θ = 3

4
and

δ̄ = E
[
1
γ

]
= 2. Right: π∗ in (10) versus θ and 1

γ
with E[θ] = 3

4
and E

[
1
γ

]
= 2.

Note that we assume θ and 1
γ
are uncorrelated to generate the above results.

When θ = 0, then π∗ increases linearly.

When θ = 1, π∗ is independent of γ.

When γ > 1, π∗ increases in θ.
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Figure 2: Optimal investment strategy versus δ = 1
γ

for different θ values.
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Homogeneous agents case:
The agents are homogeneous in their risk-aversions and relative performances, i.e.

E
[
1
γ

]
= 1

γ
and E[θ] = θ.

By this assumption, (10) turns out to be

π∗ =
µ

σ2γ

 1

1 + θ
(

1
γ
− 1
)
 . (12)
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Figure 3: Optimal investment strategy versus θ and γ with the parameters µ = 0.2, σ = 0.2 in
the homogeneous agents case for a single stock.

We check the optimal π∗ values in the right picture of Figure 1 and in Figure 3 for
θ = 0.75 and 1

γ
= 2. It is found as 5.7143 in both figures.
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Corollary

If the agents are homogeneous in their preferences, the optimal strategy of the
representative agent is given as different depending on the boundary values of the
influence constant θ.

(i) When the group Y has no influence on the agent X, that is θ = 0, we have

π∗ =
µ

σ2γ

which is also the result under the pure jump diffusion case for the group. However,
in that case, we should have the risk aversion degree of the group appearing in the
formula instead of γ since it would represent the strategy only for the group.

(ii) When the group Y has full impact on the agent X, that is θ = 1, (12) returns to be

π∗ =
µ

σ2
.

In this case, we observe that the risk aversion degree of the agent does not show up
in the optimal strategy.
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1 The pure jump case (σ = ν = 0):

We consider an assumption such that the diffusion constant parameters are equal to
zero to isolate the optimal strategy π∗ by (6).

No individual jump risk:

We consider the case where there is no individual jump risk, i.e., ε̃ = 0.
Hence, (6) reduces to

µ− λ(1− πε)−γε(1− π̂ε̂)−θ(1−γ) = 0.

Hence, we obtain the strategy as

π∗ =
1

ε
−

(µ
λ

)− 1
γ (1− π̂ε̂)

θ
(
1− 1

γ

)
ε

(
1− 1

γ

) . (13)
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Single stock case:

Lemma

Assume that µ̂ = µ and ε = ε̂. Then, the optimal strategy without an individual jump
risk reads as

π̂ = E

1

ε
−
(µ
λ

)− 1
γ (1− π̂ε)

θ
(
1− 1

γ

)

ε

(
1− 1

γ

)
 . (14)

Proof.

With the assumptions of µ̂ = µ and ε = ε̂ and averaging both sides, we obtain (14).
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Homogeneous agents case:
We assume that the agents are homogeneous in the single stock.
Then, the strategy (14) returns to be

π∗ =
1

ε
−
(µ
λ

)− 1
γ (1− π∗ε)

θ
(
1− 1

γ

)

ε

(
1− 1

γ

) (15)

for a group of homogeneous agents where the average over agents disappears and
π∗ = π̂.
By some direct calculations in (15), we isolate π as

π∗ =
1

ε
−

(
λε
µ

) 1
γ

(
1

1+θ( 1
γ

−1)

)

ε
. (16)
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Corollary

The optimal strategy (16) receives distinct values on the boundary values of θ.

(i) When the group performance does not affect the agent’s performance, that is θ = 0,
the optimal strategy is given by

π∗ =
1

ε
−

(
λε
µ

) 1
γ

ε
.

(ii) When the agent’s performance is completely dependent on the group’s performance,
that is θ = 1, the optimal strategy is found as

π∗ =
1

ε
− λ

µ
.
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Parameter choice for the numerical illustrations:

Now, we display the optimal strategies under this case. The wealth process X of the
agent have the same expected return and uncertainty in terms of the local variance
as in the pure diffusion case. Then, we have the following two equations with three
unknowns:

µ− ελ = 0.2

ε2λ = 0.04.
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Figure 4: Optimal strategies versus θ and 1
γ

for µ = {0.263245, 0.4, 0.83245}, λ = {0.1, 1, 10},
ε = {0.63245, 0.2, 0.063245} in a pure jump model with downward jumps when ε̃ = 0.

The parameter λ is the frequency of the crashes in the market.

When the downward jumps are larger, the investor is avoiding to invest more as π∗

goes down.

When λ→ ∞, ε→ 0 and so that the optimal strategy approaches to the strategy
obtained by (12) in the pure diffusion case of the homogeneous agents.
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Figure 5: Optimal strategies versus θ and 1
γ

for µ = {−0.08284,−0.43245,−1.0648},
λ = {2, 10, 40}, ε = {−0.14142,−0.063245,−0.03162} in a pure jump model with upward
jumps when ε̃ = 0.

When λ gets larger, π∗ converges to the pure-diffusion case.

The model produces negative ε and positive µ values when λ = 0.1 which results in
no solution.

When λ = 1, then we find that µ = 0 under the zero interest rate assumption.
Then, there is an opportunity to win when there are stocks.

Therefore, when λ ≤ 1, the model contains arbitrage and the portfolio optimization
problem has no solution.

The investor gets a positive return on the stock, which creates even more arbitrage
between the jumps because she borrows the money in the bank, buys stocks and
earns an extra return µ, larger than 0.
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Homogeneous jump sizes:

When ε = ε̃, the jump sizes become homogeneous..
In this case, (6) deduces to

µ− λ(1− πε)−γε(1− π̂ε̂)−θ(1−γ) − λ̃(1− πε)−γε = 0.

Thus, the optimal strategy reads as

π∗ =
1

ε
−

(
µ

(λ(1−π̂ε̂)−θ(1−γ)+λ̃)ε

)− 1
γ

ε
. (17)

Lemma

(Single stock case) Assume that µ̂ = µ, ε = ε̃ = ε̂ and λ = λ̃. Then, the optimal
strategy can be obtained as

π̂ = E


1

ε
−

1−

(
µ

λε((1−π̂ε)−θ(1−γ)+1)

)− 1
γ

ε

 (18)

where we also take the average of both sides.
B. Aydoğan (RWTH Aachen University) Optimal Investment Strategies under the Relative Performance in Jump-Diffusion MarketsApril 2, 2024 31 / 43



Homogeneous agents case:

In this case, the strategy is

π∗ =
1

ε
−

1−

(
µ

λε((1−π∗ε)−θ(1−γ)+1)

)− 1
γ

ε
. (19)

By some straightforward calculations, we have

µ

λε
(1− π∗ε)γ − (1− π∗ε)−θ(1−γ) = 1. (20)

Corollary

The optimal strategy π∗ can get different values for any θ values.
(i) When θ = 0 in (20), the optimal strategy π is given by

π∗ =
1

ε
−

( µ
2λε

)− 1
γ

ε
. (21)

(ii) When θ = 1 in (20), we obtain an equation with different powers of (1− π∗ε). Therefore,
we cannot isolate π∗ explicitly in this case.
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Independent individual jump risk:

When ε = 0 in (1), there is no correlation between the agent and the group.
In this case, (6) turns out to be

µ− λ̃(1− πε̃)−γ ε̃ = 0.

Then, the optimal strategy is obtained as

π∗ =
1−

(
µ

λ̃ε̃

)− 1
γ

ε̃
. (22)

Remark

When σ = 0 and ε = 0, we have a jump-diffusion case but we do not have joint risk
between the agent and the group. Therefore, θ disappears in the optimal strategy
formula, e.g. in (22), since it does not matter in this case. θ only appears together with
joint risk, that is, when σ = σ̂ > 0 or ε = ε̂ > 0.
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Remark

When the agent does not care about the group’s performance, that is when θ = 0, the
risk-aversion degree of the agent, which is γ, always appears on the optimal strategy
formula. This result makes sense because the degree of the risk aversion of the agent
determines the strategy playing an important role. When θ = 1, no γ appears on the
formulas.
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Benchmark portfolios
Optimal control problem for the group

The utility function of the group:

V (Y ) =
1

1− η
Y 1−η

where η > 0, η ̸= 1 is the risk-aversion of the group.

The optimization problem of the group:

u(y, t) = sup
π̂∈Â

E[V (Y )] = sup
π̂∈Â

E[V (y) | Y0 = y] (23)

where Â is the set of admissible strategies
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The Hamilton-Jacobi-Bellman (HJB) equation for the value function (23):

ut + sup
π̂∈A

{
µ̂π̂ yuy +

1

2
σ̂2π̂2y2uyy + λ

(
u(y − π̂yε̂, t)− u(y, t)

)}
= 0 (24)

for (y, t) ∈ R+ × [0, T ] with the terminal condition

u(y, T ) =
1

1− η
y1−η.

The resulting equation for π̂:

µ̂− σ̂2π̂η − λε̂(1− π̂ε̂)−η = 0. (25)
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Optimal strategies of the group:

The pure diffusion case (ε̂ = 0):

π̂∗ =
µ̂

σ̂2η
, (26)

which is the classical Merton optimal strategy.
Note that (26) can be used for a small benchmark portfolio to make a comparison
with a market benchmark portfolio.

The pure jump case (σ̂ = 0):

π̂∗ =
1

ε̂
−

( µ̂
λε̂

)
− 1

η

ε̂
. (27)
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Small benchmark portfolio without individual jump risk:

In this case, we insert (27) into (13) to get

π∗ =
1

ε
−
(µ
λ

)− 1
γ

(
µ̂
λε̂

) θ
η

(
1
γ
−1
)

ε

(
1− 1

γ

) . (28)

Lemma

(Single stock) Assume that µ̂ = µ and ε = ε̂. Then, the optimal strategy for a small
benchmark portfolio can be found as

π∗ =
1

ε
−
(µ
λ

)− 1
γ

[
ε
( µ
λε

) θ
η

]( 1
γ
−1
)
. (29)
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Benchmark portfolios:

Market benchmark portfolio without individual jump risk:

We obtain the optimal strategy of the agent for a jump-diffusion model under the
same case in a market benchmark portfolio, plugging π̂ = 1 into the strategy (13).

Lemma

(Single stock) Assume that µ̂ = µ, ε = ε̂ and all agents are homogeneous. Then, the
optimal strategy for a market benchmark portfolio is found as

π∗ =
1

ε
−
(µ
λ

)− 1
γ (1− ε)

θ
(
1− 1

γ

)

ε

(
1− 1

γ

) . (30)
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(a) Optimal equilibrium strategy (left picture) and market benchmark portfolio strategy (right picture)
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(b) Small benchmark portfolio strategy when η = 1.1 (left picture) and η = 2 (right picture), respectively

Figure 6: Optimal strategies under the case ε̃ = 0 with the parameters µ = 0.263245, λ = 0.1,
ε = 0.63245.
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Concluding Remarks

We considered optimal portfolio investment strategies with CRRA utility function in
a jump-diffusion market under the relative performance concerns.

We found the results for one agent influenced by the group’s decisions.

We simplified the models in Lacker and Zariphopoulou [7] considering one agent and
a group of agents and also recovered their results when n→ ∞ in their models for
the pure-diffusion case.

We found that the influence of the group affects the decision of the agent in
combination with the degree of risk-aversion.

We discovered that the number of the crashes in the market also affect the agent’s
strategy and even creates an arbitrage.
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