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Generating Synthetic Training Data

(ML Model design + TrainingData) ⇒ Program ( = Trained Network)
(Program + TestData) ⇒ Output (= Strategy)

Task “Market Generator”:
Find (synthetic) TrainingData for the network, such that
performance is optimized when TestData = Future Market Data.

How to train the model to prepare it for future challenges?
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Training on the Black & Scholes Model



Generating Synthetic Training Data

(ML Model design + TrainingData) ⇒ Program ( = Trained Network)
(Program + TestData) ⇒ Output (= Strategy)

Task “Market Generator”:
Find (synthetic) TrainingData for the network, such that
performance is optimized when TestData = Future Market Data.

Training on synthetic data from (scholarly) stochastic models:
B&S, Heston, . . . and more complex models that are well-undestood
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(Program + TestData) ⇒ Output (= Strategy)

How about training on real data? Training on daily stock market data

(1) Too few datapoints to train ML



Challenges with real (historical) data:

(1) Data availability: In many real situations, there is very limited data available for
training including limitations due to data privacy... and many more.

(2) Computational limitations: Some limitations imposed on datasets (real &
synthetic) by computational- and memory considerations (examples later).

(3) Data changes over time: Markets are heteroskedastic and non-stationary



Challenges with real (historical) data:

Task “Market Generator”: Generate (synthetic) TrainingData for the network, such
that performance is optimized when TestData = Market Data.

The challenge that market generators face is to produce genuinely new data samples
that in aggregation have the same distribution as the test data they will later be
exposed to, though we only see one realisation of the path. (Image by Zach Issa:)

Reality only happens once.



(ML Model design + TrainingData) ⇒ Program ( = Trained Network)
(Program + TestData) ⇒ Output (= Strategy)

How about training on real data? Training on daily stock market data

(3) Raw training data often not informative enough



Generating Synthetic Data

Task “Market Generator”: Generate (synthetic) TrainingData for the network, such
that performance is optimized when TestData = Market Data.

The challenge is to produce genuinely new data samples that in aggregation have the
same distribution as the provided sample.



Market Simulation and Market Generation

(1) Classical and Neo-classical stochastic market models: dSt = rStdt + σStdWt . . .

(2) DNN-based Generative Modelling for time series applications:
Data driven (no a-priori assumption on distribution of stochastic process)

f ∈ Nr (I , d1, . . . , dr−1,O;σ1, . . . σr ) ”non-parametric” + very flexible
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Advantage: Ability to make use of data in different settings (via conditioning).
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Market Simulation and Market Generation

(1) Classical and Neo-classical stochastic market models: dSt = rStdt + σStdWt . . .

(2) DNN-based Generative Modelling for time series applications:
Data driven (no a-priori assumption on distribution of stochastic process)

f ∈ Nr (I , d1, . . . , dr−1,O;σ1, . . . σr ) ”non-parametric” + very flexible

Cornerstone for (2): Evaluating the “quality” of produced synthetic data samples

(especially for data streams)

(Generator) (Discriminator)
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Clustering Market Regimes Using the Wasserstein Distance
with Z. Issa and A. Muguruza, 2021.



Non-parametric Online Market Regime Detection and Regime
Clustering for Multidimensional and Path-Dependent Data Structures, H. Issa, 2023.



A Hybrid Quantum Wasserstein GAN with F. Fuchs, 2023



Key: Similarity metric and possible applications

(1) Truncated signature MMD [BHLPW’20] (see more details later) 1st market gen

(2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS’22] comp, [HI’23] regime det

(4) Kernel Scoring Rules [IHLS’23] significantly improved conditional market gen



The signature (and truncated signature)

▶ Recall the signature S(x) of a path x ∈ X is given by
S(x) = (1, S1(x), S2(x), . . . , ), where

Sk(x) :=

∫
0<t1<...<tk<T

dxt1 ⊗ dxt2 ⊗ ...⊗ dxtk , k ∈ N.

▶ S(x) has values in the tensor algebra T ((Rd)) =
∏∞

k=0(Rd)⊗k

▶ This feature map, with a truncation at level N ∈ N was used in several of the
aforementioned works: Given N ∈ N, the truncated signature of order N is

S(x)≤N := (1, S(x)1, . . . ,S(x)N).



The signature kernel

▶ The associated kernel ksig : X × X → R is given by

ksig(x , y) =
∑
k≥0

⟨Sk(x), Sk(y)⟩k

where ⟨·, ·⟩k is the inner product on (Rd)⊗k .

▶ A “kernel trick” for ksig via solving a Goursat PDE (⇒ no truncation) [SCFLY’21]

▶ Computation of higher rank sig kernel (⇒ incorporation of differences in filtration
and pathwise effects /non-Markovianity ) [H.SLLDL’21].



(Signature) Maximum Mean Discrepancy

Maximum mean discrepancy (MMD): µ and ν Borel probability measures on X .

MMDG(µ, ν) := supf ∈G

∣∣∣∣∫
X
f (x)µ(dx)−

∫
X
f (x)ν(dx)

∣∣∣∣ .
The MMDG is a metric (point separating) if G is rich enough (e.g. a RKHS).

If (H, k) is a RKHS with kernel k and G := {f ∈ H : ||f ||H ≤ 1} then

MMD2
G(µ, ν) = E

[
k(X ,X ′)

]
+ E

[
k(Y ,Y ′)

]
− 2E [k(X ,Y )]

for X ,X ′ ∼ µ independent integrable r.v. and Y ,Y ′ ∼ ν independent integrable r.v.

Characteristicness of the signature kernel implies an associated signature MMD, which
can be used as a metric on path space [CO ’18]. We choose k(·, ·) to be the
(normalised) signature kernel and use MMDG(µ, ν) as a hypothesis test:

H0 : ν = µ

H1 : ν ̸= µ
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The Signature MMD as a Two-Sample Test

The aforementioned MMD has been one of the most-employed tools in this context.
However, only very few results are available on understanding how the signature kernel
MMD functions as a statistical tool.

For (independent) samples X1, . . . ,Xn ∼ PX and Y1, . . . ,Yn ∼ PY there is an unbiased
estimator MMD2

n(X1, . . . ,Xn;Y1, . . . ,Yn) and strongly consistent. It for n → ∞ it
converges to the (theoretical) MMD

MMD2
n(X1, . . . ,Xn;Y1, . . . ,Yn) −→n→∞ MMD2

G(PX ,PY ) a.s.



Scoring rules [GR07]

Definition (Scoring rule)

Let P be a convex class of measures on a space (X ,A). A scoring rule
s : P × X → [−∞,∞] is any function s.t. s(P, ·) is P-quasi integrable for all P ∈ P.

Definition (Properness)

Let ∫(P,Q) = Ey∼Q[s(P, y)] denote the expected scoring rule. The scoring rule
s : P × X → [−∞,+∞] is called proper (relative to the class P)
if ∫(P,P) ≤ ∫(Q,P) for all P,Q ∈ P.
It is called strictly proper if Q = P is the unique minimiser.

Natural way to define a divergence: Ds(P||Q) = ∫(Q,P)− ∫(P,P) for strictly proper s.



Signature kernel scores I

▶ For a given kernel k on X , the associated kernel scoring rule sk is given by

sk(P, y) = Ex ,x ′∼P[k(x , x
′)]− 2Ex∼P[k(x , y)]

▶ Denote by ϕsig : P(X )×X → R the kernel scoring rule associated to the
signature kernel ksig

Proposition 1 (IH.LS’23 Proposition 3.3)

For any compact K ⊂ X , ϕsig is a strictly proper kernel score relative to P(K), i.e.
Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)] for all P,Q ∈ P(K), with equality if and only if
P = Q.



Signature kernel scoring rules II

▶ Given samples {xi}mi=1 ∼ P and y ∈ X , an unbiased estimator of ϕsig is given by

ϕ̂sig(P, y) =
1

m(m − 1)

∑
i ̸=j

ksig(xi , xj)−
2

m

M∑
i=1

ksig(xi , y)

▶ Note that
Dsig(P,Q)2 = ϕsig(P,Q) + Ey ,y ′∼Q[ksig(y , y

′)],

that is, we recover the (squared) signature maximum mean discrepancy (MMD).



Key: Similarity metric and possible applications

(1) Truncated signature MMD [BHLPW’20] (see more details later) 1st market gen

(2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS’22] comp, [HI’23] regime det

(4) Kernel Scoring Rules [IHLS’23] Link to paper, Link to Code

papers.ssrn.com/sol3/papers.cfm?abstract_id=4581481


Dealing with uncertainty





Challenges with real (historical) data:

Task “Market Generator”: Generate (synthetic) TrainingData for the network, such
that performance is optimized when TestData = Market Data.

The challenge that market generators face is to produce genuinely new data samples
that in aggregation have the same distribution as the test data they will later be
exposed to, though we only see one realisation of the path. (Image by Zach Issa:)

Reality only happens once.



Challenges with real (historical) data:

(1) Data availability: In many real situations, there is very limited data available for
training/estimation). ⇒ small datasets may induce higher estimation errors.

(2) Computational limitations: Some limitations imposed on datasets
(real & synthetic) by computational- and memory considerations.

(3) Data changes over time: Markets are heteroskedastic and non-stationary
⇒ may be a possible reason for (1) limitations in (training) data availabliblty



The Signature MMD as a Two-Sample Test

Image: Andrew Alden



The Signature MMD as a Two-Sample Test

Image: Andrew Alden



The Signature MMD as a Two-Sample Test

The aforementioned MMD has been one of the most-employed tools in this context.
However, only very few results are available on understanding how the signature kernel
MMD functions as a statistical tool.

For (independent) samples X1, . . . ,Xn ∼ PX and Y1, . . . ,Yn ∼ PY there is an unbiased
estimator MMD2

n(X1, . . . ,Xn;Y1, . . . ,Yn) and strongly consistent. It for n → ∞ it
converges to the (theoretical) MMD

MMD2
n(X1, . . . ,Xn;Y1, . . . ,Yn) −→n→∞ MMD2

G(PX ,PY ) a.s.



The Signature MMD Two-Sample Test (Base Case,
truncated signatures)

To asses whether a generative model generate “realistic” paths, sample real paths
Y1, . . . ,Yn, for some n ∈ N, and sample generated paths X1, . . . ,Xn and apply the
two-sample test in [Chevyrev and Oberhauser ’18]. Signature-based MMD test statistic
T (X1, . . . ,Xn;Y1, . . . ,Yn) where k(·, ·) is the signature kernel :

T (X1, . . . ,Xn;Y1, . . . ,Yn) :=
1

n(n−1)

∑
i,j ;i ̸=j

k(Xi ,Xj)− 2
n2

∑
i,j

k(Xi ,Yj) +
1

n(n−1)

∑
i,j ;i ̸=j

k(Yi ,Yj),

Then, given a confidence level α ∈ (0, 1), compute cα(n) := 4
√
−n−1 logα

(threshold). Generated paths are realistic with a confidence α if T 2
n < cα(n).

Note how threshold depends on the number n of samples considered.

This base-case has been considered in “Signature-based validation of real-world
economic scenarios” [Andres, Boumezoued, Jourdain ’23] for n ̸= m.
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The Signature MMD as a Two-Sample Test

Claim: In this setting, robustification comes (in some parts) naturally through small
sample sizes of data:



Path scalings and type II errors

1. Path scalings can help reduce the incidence of type II error for small batch sizes.

2. Since φ(x) = xk/k! is increasing in x , (larger) scaling has the effect of increasing
the numerical size of higher-order signature terms.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses?
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Solution: An adversarial (GAN) structure may be needed to run through the most
challenging scalings to create realistic data (ongoing Zach Issa ...)
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Dealing with Uncertainty: Pricing (path dependent) payoffs with the help of the MMD
(link) with A. Alden, C. Ventre, G. Lee, 2022.

Solution:
Estimate simultaneously from multiple angles to sharpen perspective

(estimate MMD to several reference points/models)

dl.acm.org/doi/abs/10.1145/3533271.3561740


Dealing with Uncertainty: Pricing (path dependent) payoffs with the help of the MMD
(link) with A. Alden, C. Ventre, G. Lee, 2022.

Solution:
Estimate simultaneously from multiple angles to sharpen perspective

(estimate MMD to several reference points/models)

dl.acm.org/doi/abs/10.1145/3533271.3561740


Pricing path dependent payoffs with the help of the MMD

Image: Andrew Alden



Pricing path dependent payoffs with the help of the MMD

Image: Andrew Alden



Introducing robustness into Deep Hedging/ Deep Trading with the help of
pathwise similarity metrics (MMD)

Robust Hedging Gans (link) with Y. Limmer, 2023.
Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework

with Exogenous Signals with O. Futter and M. Wiese, 2023 (link).

https/papers.ssrn.com/sol3/papers.cfm?abstract_id=4489029
https/papers.ssrn.com/sol3/papers.cfm?abstract_id=4541830
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Robust Hedging Gans, with Y. Limmer, 2023 (link).
Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework
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Robust Hedging Gans

(1) Data availability: In many real situations, there is very limited data available for
training/estimation). ⇒ small datasets may induce higher estimation errors.

(2) Computational limitations: Some limitations imposed on datasets (real &
synthetic) by computational- and memory considerations (examples later).

(3) Data changes over time: Markets are heteroskedastic and non-stationary
⇒ may be a possible reason for (1) limitations in (training) data availabliblty
⇒ large changes in the data may require retraining / changing the network, but...

...small changes in data & estimation errors should not throw the application off track.
Needed: Appropriate (smooth) robustification of tasks towards small changes
in input



Robust Hedging Gans

In the context hedging and trading strategies, the (pathwise) MMD can be helpful to
introduce a smooth ambiguity-aversion effect into the hedging / trading objective.



Introducing robustness into DH/DT with the MMD

The original objective of a trading can be (most generally) given as

max(ϕt)t∈[0,T ]
E
[
U(VT )

]
, where VT =

d∑
m=1

∫ T

0
ϕm
t dS

m
t ,

where VT is the terminal profit and loss of our trading strategy.

Robustify: Extend the set of possible models, but restrict this set to make it feasible.
Often robustification entails allowing alternative models within a δ-ball Bδ(P) around P.

max(ϕt)t∈[0,T ]
minQ∈Bδ(P) E

Q
[
U(VT )

]
,

Implicit: All alternative models Q ∈ Bδ(P) are equally likely to materialize.
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Implicit: All alternative models Q ∈ Bδ(P) are equally likely to materialize.



Introducing robustness into DH/DT with the MMD

The original objective of a trading can be (most generally) given as

max(ϕt)t∈[0,T ]
E
[
U(VT )

]
, where VT =

d∑
m=1

∫ T

0
ϕm
t dS

m
t ,

where VT is the terminal profit and loss of our trading strategy.
Robustify: Extend the set of possible models, but restrict this set to make it feasible.
Our approach to robustification: Smoother version of model ambiguity via MMD

max(ξt)t∈[0,T ]
minQ∈Q EQ

{
U(VT ) +

1
ηd(P,Q)

}
,

where d(P,Q) denotes the (MMD) distance of a realised model Q ∈ Q to our reference
model P and 1

η is a scaling parameter representing the investor’s aversion to model
ambiguity. Taking d(·, ·) as the Sig-MMD allows to take a fully pathwise perspective.



Key: Similarity metric and possible applications

(1) Truncated signature MMD [BHLPW’20] (see more details later) 1st market gen

(2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS’22] comp, [HI’23] regime det

(4) Kernel Scoring Rules [IHLS’23] significantly improved conditional market gen



Non-Adversarial Training of Neural SDEs with Signature
Kernel Scores: Issa, H., Lemercier, Salvi ’23

▶ Components:
▶ A generator Gθ : Θ×Z → X
▶ A discriminator D : P(X )× P(X ) → R, and
▶ A training procedure.

▶ In the case where the discriminator is parametrized, D = Dϕ, and training
objective is adversarialized (which it is not), we recover the classic GAN:

(Generator) (Discriminator)



Non-Adversarial Training of Neural SDEs with Signature
Kernel Scores: Issa, H., Lemercier, Salvi ’23

▶ Components:
▶ A generator Gθ : Θ×Z → X
▶ A discriminator D : P(X )× P(X ) → R, and
▶ A training procedure.

▶ In the case where the discriminator is parametrized, D = Dϕ, and training
objective is adversarialized, we recover the classic GAN [GAMX+’20]

▶ Goal: a plug-and-play pipeline for training market gen. on path space, which is
▶ mesh-free,
▶ stable,
▶ memory efficient,
▶ easily able to be conditionalized, and
▶ can handle inputs/outputs taking values in infinite-dimensional spaces



Related work: Application to MG

[BHLPW’20]: VAE-based conditional generative model using the truncated
signature MMD. Required signature inversion.

[K’21]: SDE-GAN, adversarialising the training objective via a Neural CDE. Class
conditioning examples.

[NSzSXW’21]: Sig-Wasserstein Gans for Time-series Generation. Training
Log-RNN, AR-FNN generator against the Sig-Wasserstein distance.
▶ Again uses truncation of the signature
▶ Conditioning examples make use of on relationship between past truncated signature

and future which is hard to recreate in practice

[WWPKBMB’21]: Multi-asset spot and option market simulation, 2021.
Not mesh-free, and not conditional (mentioned as a future extension)



Non-adversarial training of Neural SDEs

▶ The training objective is

min
θ

L(θ) where L(θ) = Ey∼PX true [ϕsig(PX θ , y)] + λ ∥θ∥L2

▶ The training objective is minimised when PX θ = PX true (since striclty proper sr)

▶ Training procedure can be summarized by

Generator: X θ ≈ SDESolve(θ),

Discriminator: L(θ) ≈ PDESolve(X θ,X true).

▶ Both procedures are able to be backpropagated through
▶ Generator: Through the SDE solver
▶ Discriminator: Via solving another system of adjoint PDEs [LSCBDL’21]



Experiments: rBergomi model

Goal: Train a Neural SDE to learn the rough stochastic volatility model

dyt = −1

2
Vtdt +

√
VtdWt where dξut = ξut η

√
2α+ 1(u − t)αdBt .

Figure 1: Neural SDE trained with ϕsig where X true ∼ rBergomi(η, ρ,H).



Experiment: Currency pairs EUR/USD and USD/JPY



Experiments: Conditional generation EURUSD

▶ Conditioning variables are time-augmented EUR/USD trajectories
Q ∼ x : [t0 − dt, t0] → R2

▶ Target variables: future trajectories P(·|x) ∼ X true : [t0, t0 + dt ′] → R2

▶ Encode conditioning variables via the order 5 log-signature of the input trajectories

▶ Train to minimise the conditional expected signature kernel score

▶ Many hyperparameters to consider... in general, path scaling is the most
important (same is true for previous case!)



Experiments: Conditional generation EURUSD

Given a conditioning path x ∼ Q, the generator provides (in blue) the conditional
distribution PX θ(·|x). The dotted line gives the true path. y ∼ PX true(·|x).

Resultant path is often captured in the envelope of the associated conditional
distribution



Experiment: Limit order books

Train a Neural SPDE model on NASDAQ LOB data, composing the signature kernel
with three different SE-T type kernels

KS test average scores for each spatiotemporal marginal, 100 runs, NASDAQ data.



Thank you for your attention!


