

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うくの

Pathwise methods and Robust GANs for Pricing and Hedging

Blanka Horvath University of Oxford, the Oxford Man Institute

International Conference on Computational Finance —ICCF24 —

3rd April 2024, Amsterdam

Motivation: DL and Automation for Financial Applications

Example: I

Hedging

Motivation: DL and Automation for Financial Applications

Example: Deep Hedging

Motivation: DL and Automation for Financial Applications

Example: Deep Hedging

◆臣▶ 臣 めへで

≡▶ ≡ のへ⊙

(ML Model design + TrainingData) ⇒ Program (= Trained Network) (Program + TestData) ⇒ Output (= Strategy)

(ML Model design + TrainingData) ⇒ Program (= Trained Network) (Program + TestData) ⇒ Output (= Strategy) Task "Market Generator":

Find (synthetic) **TrainingData** for the network, such that performance is optimized when **TestData** = **Future Market Data**.

(ML Model design + TrainingData) ⇒ Program (= Trained Network) (Program + TestData) ⇒ Output (= Strategy) Task "Market Generator":

Find (synthetic) **TrainingData** for the network, such that performance is optimized when **TestData** = **Future Market Data**.

(ML Model design + TrainingData) ⇒ Program (= Trained Network) (Program + TestData) ⇒ Output (= Strategy) Task "Market Generator":

Find (synthetic) **TrainingData** for the network, such that performance is optimized when **TestData** = **Future Market Data**.

How to train the model to prepare it for future challenges?

(ML Model design + TrainingData) ⇒ Program (= Trained Network) (Program + TestData) ⇒ Output (= Strategy)

Task "Market Generator":

Find (synthetic) **TrainingData** for the network, such that performance is optimized when **TestData** = **Future Market Data**.

Training on the Black & Scholes Model

(ML Model design + TrainingData) ⇒ Program (= Trained Network)
 (Program + TestData) ⇒ Output (= Strategy)
Task "Market Generator":
Find (synthetic) TrainingData for the network, such that
performance is optimized when TestData = Future Market Data.

Training on synthetic data from (scholarly) stochastic models: B&S, Heston, ... and more complex models that are well-undestood How about training on real data?

(ML Model design + TrainingData) ⇒ Program (= Trained Network) (Program + TestData) ⇒ Output (= Strategy)

How about training on real data?

(ML Model design + TrainingData) \Rightarrow Program (= Trained Network) $(Program + TestData) \Rightarrow Output (= Strategy)$

How about training on real data? **Training on daily stock market data**

(1) Too few datapoints to train ML

Challenges with real (historical) data:

- (1) **Data availability:** In many real situations, there is very limited data available for training including limitations due to **data privacy**... and many more.
- (2) **Computational limitations:** Some limitations imposed on datasets (real & synthetic) by computational- and memory considerations (examples later).
- (3) Data changes over time: Markets are heteroskedastic and non-stationary

Challenges with real (historical) data:

Task "Market Generator": Generate (synthetic) **TrainingData** for the network, such that performance is optimized when **TestData** = Market Data.

The challenge that market generators face is to produce **genuinely new data** samples that in aggregation have the same distribution as the test data they will later be exposed to, **though we only see one realisation of the path**. (Image by Zach Issa:)

Reality only happens once.

(ML Model design + TrainingData) ⇒ Program (= Trained Network) (Program + TestData) ⇒ Output (= Strategy)

How about training on real data? Training on daily stock market data

(3) Raw training data often not informative enough

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q (?)

Generating Synthetic Data

Task "Market Generator": Generate (synthetic) **TrainingData** for the network, such that performance is optimized when **TestData** = Market Data.

The challenge is to produce **genuinely new data** samples that in aggregation have the same distribution as the provided sample.

- (1) Classical and Neo-classical stochastic market models: $dS_t = rS_t dt + \sigma S_t dW_t \dots$
- (2) DNN-based Generative Modelling for time series applications: Data driven (no a-priori assumption on distribution of stochastic process) $f \in \mathcal{N}_r(I, d_1, \dots, d_{r-1}, O; \sigma_1, \dots, \sigma_r)$ "non-parametric" + very flexible

- (1) Classical and Neo-classical stochastic market models: $dS_t = rS_t dt + \sigma S_t dW_t \dots$
- (2) DNN-based Generative Modelling for time series applications: Data driven (no a-priori assumption on distribution of stochastic process) f ∈ N_r(I, d₁,..., d_{r-1}, O; σ₁,... σ_r) "non-parametric" + very flexible

- (1) Classical and Neo-classical stochastic market models: $dS_t = rS_t dt + \sigma S_t dW_t \dots$
- (2) DNN-based Generative Modelling for time series applications: Data driven (no a-priori assumption on distribution of stochastic process) f ∈ N_r(I, d₁,..., d_{r-1}, O; σ₁,... σ_r) "non-parametric" + very flexible

Advantage: Ability to make use of data in different settings (via conditioning).

- (1) Classical and Neo-classical stochastic market models: $dS_t = rS_t dt + \sigma S_t dW_t \dots$
- (2) DNN-based Generative Modelling for time series applications: Data driven (no a-priori assumption on distribution of stochastic process) f ∈ N_r(I, d₁,..., d_{r-1}, O; σ₁,... σ_r) "non-parametric" + very flexible

- (1) Classical and Neo-classical stochastic market models: $dS_t = rS_t dt + \sigma S_t dW_t \dots$
- (2) DNN-based Generative Modelling for time series applications: Data driven (no a-priori assumption on distribution of stochastic process) $f \in \mathcal{N}_r(I, d_1, \dots, d_{r-1}, O; \sigma_1, \dots, \sigma_r)$ "non-parametric" + very flexible

- (1) Classical and Neo-classical stochastic market models: $dS_t = rS_t dt + \sigma S_t dW_t \dots$
- (2) DNN-based Generative Modelling for time series applications: Data driven (no a-priori assumption on distribution of stochastic process) $f \in \mathcal{N}_r(I, d_1, \dots, d_{r-1}, O; \sigma_1, \dots, \sigma_r)$ "non-parametric" + very flexible

- (1) Classical and Neo-classical stochastic market models: $dS_t = rS_t dt + \sigma S_t dW_t \dots$
- (2) DNN-based Generative Modelling for time series applications: Data driven (no a-priori assumption on distribution of stochastic process) $f \in \mathcal{N}_r(I, d_1, \dots, d_{r-1}, O; \sigma_1, \dots, \sigma_r)$ "non-parametric" + very flexible

Cornerstone for (2): Evaluating the "quality" of produced synthetic data samples (especially for data streams)

▲□▶▲□▶▲□▶▲□▶ □ のへで

200

э

(1) Truncated signature MMD [BHLPW'20] (see more details later) 1st market gen

(1) Truncated signature MMD [BHLPW'20] (see more details later) 1st market gen (2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS'22] comp, [HI'23] regime det

Truncated signature MMD [BHLPW'20] (see more details later) 1st market gen
 (2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS'22] comp, [HI'23] regime det
 (4) Kernel Scoring Rules [IHLS'23] significantly improved conditional market gen

Clustering Market Regimes Using the Wasserstein Distance I and I with Z. Issa and A. Muguruza, 2021.

Non-parametric Online Market Regime Detection and Regime 💿 🔊

Clustering for Multidimensional and Path-Dependent Data Structures, H. Issa, 2023.

A Hybrid Quantum Wasserstein GAN with P. Fuchs, 2023 🐘 🚊 🗠 🖄

Truncated signature MMD [BHLPW'20] (see more details later) 1st market gen
 (2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS'22] comp, [HI'23] regime det
 (4) Kernel Scoring Rules [IHLS'23] significantly improved conditional market gen

The signature (and truncated signature)

▶ Recall the signature S(x) of a path $x \in \mathcal{X}$ is given by $S(x) = (1, S^1(x), S^2(x), ...,)$, where

$$S^k(x) := \int_{0 < t_1 < \ldots < t_k < T} dx_{t_1} \otimes dx_{t_2} \otimes \ldots \otimes dx_{t_k}, \quad k \in \mathbb{N}.$$

- ▶ S(x) has values in the tensor algebra $T((\mathbb{R}^d)) = \prod_{k=0}^{\infty} (\mathbb{R}^d)^{\otimes k}$
- ▶ This feature map, with a truncation at level $N \in \mathbb{N}$ was used in several of the aforementioned works: Given $N \in \mathbb{N}$, the truncated signature of order N is

 $S(x)^{\leq N} := (1, S(x)^1, \dots, S(x)^N).$

・ロト ・ 日 ・ ・ エ ・ ・ 日 ・ う へ や ・
The signature kernel

▶ The associated kernel $k_{sig} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is given by

$$k_{
m sig}(x,y) = \sum_{k\geq 0} \langle S^k(x), S^k(y) \rangle_k$$

where $\langle \cdot, \cdot \rangle_k$ is the inner product on $(\mathbb{R}^d)^{\otimes k}$.

- ▶ A "kernel trick" for k_{sig} via solving a Goursat PDE (\Rightarrow no truncation) [SCFLY'21]
- Computation of higher rank sig kernel (⇒ incorporation of differences in filtration and pathwise effects /non-Markovianity) [H.SLLDL'21].

(Signature) Maximum Mean Discrepancy

Maximum mean discrepancy (MMD): μ and ν Borel probability measures on \mathcal{X} .

$$MMD_{\mathcal{G}}(\mu,\nu) := \sup_{f \in \mathcal{G}} \left| \int_{\mathcal{X}} f(x)\mu(dx) - \int_{\mathcal{X}} f(x)\nu(dx) \right|.$$

The $MMD_{\mathcal{G}}$ is a **metric** (point separating) if \mathcal{G} is rich enough (e.g. a RKHS).

(Signature) Maximum Mean Discrepancy

Maximum mean discrepancy (MMD): μ and ν Borel probability measures on \mathcal{X} .

$$MMD_{\mathcal{G}}(\mu,\nu) := \sup_{f\in\mathcal{G}} \left| \int_{\mathcal{X}} f(x)\mu(dx) - \int_{\mathcal{X}} f(x)\nu(dx) \right|.$$

The $MMD_{\mathcal{G}}$ is a **metric** (point separating) if \mathcal{G} is rich enough (e.g. a RKHS).

If (\mathcal{H}, k) is a RKHS with kernel k and $\mathcal{G} := \{f \in \mathcal{H} : ||f||_{\mathcal{H}} \leq 1\}$ then $MMD_{\mathcal{G}}^2(\mu, \nu) = \mathbb{E}\left[k(X, X')\right] + \mathbb{E}\left[k(Y, Y')\right] - 2\mathbb{E}\left[k(X, Y)\right]$

for $X, X' \sim \mu$ independent integrable r.v. and $Y, Y' \sim \nu$ independent integrable r.v.

(Signature) Maximum Mean Discrepancy

Maximum mean discrepancy (MMD): μ and ν Borel probability measures on \mathcal{X} .

$$MMD_{\mathcal{G}}(\mu,\nu) := \sup_{f \in \mathcal{G}} \left| \int_{\mathcal{X}} f(x)\mu(dx) - \int_{\mathcal{X}} f(x)\nu(dx) \right|.$$

The $MMD_{\mathcal{G}}$ is a **metric** (point separating) if \mathcal{G} is rich enough (e.g. a RKHS).

If (\mathcal{H}, k) is a RKHS with kernel k and $\mathcal{G} := \{f \in \mathcal{H} : ||f||_{\mathcal{H}} \leq 1\}$ then $MMD_{\mathcal{G}}^2(\mu, \nu) = \mathbb{E}\left[k(X, X')\right] + \mathbb{E}\left[k(Y, Y')\right] - 2\mathbb{E}\left[k(X, Y)\right]$

for $X, X' \sim \mu$ independent integrable r.v. and $Y, Y' \sim \nu$ independent integrable r.v.

Characteristicness of the signature kernel implies an associated signature MMD, which can be used as a metric on path space [CO '18]. We choose $k(\cdot, \cdot)$ to be the (normalised) signature kernel and use $MMD_{\mathcal{G}}(\mu, \nu)$ as a hypothesis test:

The aforementioned MMD has been one of the most-employed tools in this context. However, only very few results are available on understanding how the signature kernel MMD functions as a statistical tool.

For (independent) samples $X_1, \ldots, X_n \sim \mathbb{P}_X$ and $Y_1, \ldots, Y_n \sim \mathbb{P}_Y$ there is an unbiased estimator $MMD_n^2(X_1, \ldots, X_n; Y_1, \ldots, Y_n)$ and strongly consistent. It for $n \to \infty$ it converges to the (theoretical) MMD

$$MMD_n^2(X_1,\ldots,X_n;Y_1,\ldots,Y_n) \longrightarrow_{n\to\infty} MMD_{\mathcal{G}}^2(\mathbb{P}_X,\mathbb{P}_Y)$$
 a.s.

Scoring rules [GR07]

Definition (Scoring rule)

Let \mathcal{P} be a convex class of measures on a space $(\mathcal{X}, \mathcal{A})$. A scoring rule $s : \mathcal{P} \times \mathcal{X} \to [-\infty, \infty]$ is any function s.t. $s(\mathbb{P}, \cdot)$ is \mathcal{P} -quasi integrable for all $\mathbb{P} \in \mathcal{P}$.

Definition (Properness)

Let $\int (\mathbb{P}, \mathbb{Q}) = \mathbb{E}_{y \sim \mathbb{Q}}[s(\mathbb{P}, y)]$ denote the expected scoring rule. The scoring rule $s : \mathcal{P} \times \mathcal{X} \to [-\infty, +\infty]$ is called proper (relative to the class \mathcal{P}) if $\int (\mathbb{P}, \mathbb{P}) \leq \int (\mathbb{Q}, \mathbb{P})$ for all $\mathbb{P}, \mathbb{Q} \in \mathcal{P}$. It is called strictly proper if $\mathbb{Q} = \mathbb{P}$ is the unique minimiser.

Natural way to define a divergence: $\mathcal{D}_s(\mathbb{P}||\mathbb{Q}) = \int (\mathbb{Q}, \mathbb{P}) - \int (\mathbb{P}, \mathbb{P})$ for strictly proper s.

Signature kernel scores I

For a given kernel k on \mathcal{X} , the associated kernel scoring rule s_k is given by

$$s_k(\mathbb{P},y) = \mathbb{E}_{x,x' \sim \mathbb{P}}[k(x,x')] - 2\mathbb{E}_{x \sim \mathbb{P}}[k(x,y)]$$

Denote by φ_{sig} : P(X) × X → ℝ the kernel scoring rule associated to the signature kernel k_{sig}

Proposition 1 (IH.LS'23 Proposition 3.3)

For any compact $\mathcal{K} \subset \mathcal{X}$, ϕ_{sig} is a strictly proper kernel score relative to $\mathcal{P}(\mathcal{K})$, i.e. $\mathbb{E}_{y \sim \mathbb{Q}}[\phi_{sig}(\mathbb{Q}, y)] \leq \mathbb{E}_{y \sim \mathbb{Q}}[\phi_{sig}(\mathbb{P}, y)]$ for all $\mathbb{P}, \mathbb{Q} \in \mathcal{P}(\mathcal{K})$, with equality if and only if $\mathbb{P} = \mathbb{Q}$.

Signature kernel scoring rules II

• Given samples $\{x_i\}_{i=1}^m \sim \mathbb{P}$ and $y \in \mathcal{X}$, an unbiased estimator of ϕ_{sig} is given by

$$\hat{\phi}_{\mathrm{sig}}(\mathbb{P}, y) = rac{1}{m(m-1)} \sum_{i \neq j} k_{\mathrm{sig}}(x_i, x_j) - rac{2}{m} \sum_{i=1}^M k_{\mathrm{sig}}(x_i, y)$$

Note that

$$\mathcal{D}_{\mathsf{sig}}(\mathbb{P},\mathbb{Q})^2 = \phi_{\mathsf{sig}}(\mathbb{P},\mathbb{Q}) + \mathbb{E}_{y,y'\sim\mathbb{Q}}[k_{\mathsf{sig}}(y,y')],$$

that is, we recover the (squared) signature maximum mean discrepancy (MMD).

Key: Similarity metric and possible applications

Truncated signature MMD [BHLPW'20] (see more details later) 1st market gen
 (2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS'22] comp, [HI'23] regime det
 (4) Kernel Scoring Rules [IHLS'23] Link to paper, Link to Code

Dealing with uncertainty

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Challenges with real (historical) data:

Task "Market Generator": Generate (synthetic) **TrainingData** for the network, such that performance is optimized when **TestData** = Market Data.

The challenge that market generators face is to produce **genuinely new data** samples that in aggregation have the same distribution as the test data they will later be exposed to, **though we only see one realisation of the path**. (Image by Zach Issa:)

Reality only happens once.

Challenges with real (historical) data:

- (1) **Data availability:** In many real situations, there is very limited data available for training/estimation). ⇒ small datasets may induce higher estimation errors.
- (2) **Computational limitations:** Some limitations imposed on datasets (real & synthetic) by computational- and memory considerations.
- (3) **Data changes over time:** Markets are heteroskedastic and non-stationary ⇒ may be a possible reason for (1) limitations in (training) data availabliblty

イロト イヨト イヨト イヨト

Image: Andrew Alden

• Each collection of paths $\{\mathbf{x}^k\}_{k=1}^r, \{\mathbf{y}^k\}_{k=1}^m$ results in a different distance value.

Ambiguity in feature vectors.

.

Image: Andrew Alden

The aforementioned MMD has been one of the most-employed tools in this context. However, only very few results are available on understanding how the signature kernel MMD functions as a statistical tool.

For (independent) samples $X_1, \ldots, X_n \sim \mathbb{P}_X$ and $Y_1, \ldots, Y_n \sim \mathbb{P}_Y$ there is an unbiased estimator $MMD_n^2(X_1, \ldots, X_n; Y_1, \ldots, Y_n)$ and strongly consistent. It for $n \to \infty$ it converges to the (theoretical) MMD

$$MMD_n^2(X_1,\ldots,X_n;Y_1,\ldots,Y_n) \longrightarrow_{n\to\infty} MMD_{\mathcal{G}}^2(\mathbb{P}_X,\mathbb{P}_Y)$$
 a.s.

The Signature MMD Two-Sample Test (Base Case, truncated signatures)

To asses whether a generative model generate "realistic" paths, sample real paths Y_1, \ldots, Y_n , for some $n \in \mathbb{N}$, and sample generated paths X_1, \ldots, X_n and apply the two-sample test in [Chevyrev and Oberhauser '18]. Signature-based MMD test statistic $T(X_1, \ldots, X_n; Y_1, \ldots, Y_n)$ where $k(\cdot, \cdot)$ is the signature kernel:

$$T(X_1,\ldots,X_n;Y_1,\ldots,Y_n) := \frac{1}{n(n-1)} \sum_{i,j;i\neq j} k(X_i,X_j) - \frac{2}{n^2} \sum_{i,j} k(X_i,Y_j) + \frac{1}{n(n-1)} \sum_{i,j;i\neq j} k(Y_i,Y_j),$$

Then, given a confidence level $\alpha \in (0, 1)$, compute $c_{\alpha}(n) := 4\sqrt{-n^{-1}\log \alpha}$ (threshold). Generated paths are realistic with a confidence α if $T_n^2 < c_{\alpha}(n)$.

The Signature MMD Two-Sample Test (Base Case, truncated signatures)

To asses whether a generative model generate "realistic" paths, sample real paths Y_1, \ldots, Y_n , for some $n \in \mathbb{N}$, and sample generated paths X_1, \ldots, X_n and apply the two-sample test in [Chevyrev and Oberhauser '18]. Signature-based MMD test statistic $T(X_1, \ldots, X_n; Y_1, \ldots, Y_n)$ where $k(\cdot, \cdot)$ is the signature kernel:

$$T(X_1,\ldots,X_n;Y_1,\ldots,Y_n) := \frac{1}{n(n-1)} \sum_{i,j;i\neq j} k(X_i,X_j) - \frac{2}{n^2} \sum_{i,j} k(X_i,Y_j) + \frac{1}{n(n-1)} \sum_{i,j;i\neq j} k(Y_i,Y_j),$$

Then, given a confidence level $\alpha \in (0, 1)$, compute $c_{\alpha}(n) := 4\sqrt{-n^{-1}\log \alpha}$ (threshold). Generated paths are realistic with a confidence α if $T_n^2 < c_{\alpha}(n)$. Note how threshold depends on the number *n* of samples considered.

The Signature MMD Two-Sample Test (Base Case, truncated signatures)

To asses whether a generative model generate "realistic" paths, sample real paths Y_1, \ldots, Y_n , for some $n \in \mathbb{N}$, and sample generated paths X_1, \ldots, X_n and apply the two-sample test in [Chevyrev and Oberhauser '18]. Signature-based MMD test statistic $T(X_1, \ldots, X_n; Y_1, \ldots, Y_n)$ where $k(\cdot, \cdot)$ is the signature kernel:

$$T(X_1,\ldots,X_n;Y_1,\ldots,Y_n) := \frac{1}{n(n-1)} \sum_{i,j;i\neq j} k(X_i,X_j) - \frac{2}{n^2} \sum_{i,j} k(X_i,Y_j) + \frac{1}{n(n-1)} \sum_{i,j;i\neq j} k(Y_i,Y_j),$$

Then, given a confidence level $\alpha \in (0, 1)$, compute $c_{\alpha}(n) := 4\sqrt{-n^{-1}\log \alpha}$ (threshold). Generated paths are realistic with a confidence α if $T_n^2 < c_{\alpha}(n)$. Note how threshold depends on the number *n* of samples considered.

This base-case has been considered in "Signature-based validation of real-world economic scenarios" [Andres, Boumezoued, Jourdain '23] for $n \neq m$.

▶ Perform a two-sample test: \mathcal{H}_0 : $\mathbb{P}_{X|\mathcal{F}_X} = \mathbb{P}_{Y|\mathcal{F}_Y}$ and \mathcal{H}_A : $\mathbb{P}_{X|\mathcal{F}_X} \neq \mathbb{P}_{Y|\mathcal{F}_Y}$.

Empirical estimate of 2nd-order MMD has a long **run-time**.

・ロト・日本・日本・日本・日本・日本

Claim: In this setting, robustification comes (in some parts) naturally through small sample sizes of data:

▲口 ▶ ▲□ ▶ ▲目 ▶ ▲目 ▶ ● ○ ● ● ● ●

Path scalings and type II errors

- 1. Path scalings can help reduce the incidence of type II error for small batch sizes.
- 2. Since $\varphi(x) = x^k/k!$ is increasing in x, (larger) scaling has the effect of increasing the numerical size of higher-order signature terms.
- 3. **Issue:** what is the (most) appropriate scaling to tell apart two different stochastic processes?

Path scalings to deal with type II errors

- 1. Path scalings can help reduce the incidence of type II error for small batch sizes.
- 2. Since $\varphi(x) = x^k/k!$ is increasing in x, (larger) scaling has the effect of increasing the numerical size of higher-order signature terms.
- 3. **Issue:** what is the (most) appropriate scaling to tell apart two different stochastic proceses?

Path scalings and type II errors

- 1. Since $\varphi(x) = x^k/k!$ is increasing in x, (larger) scaling has the effect of increasing the numerical size of higher-order signature terms.
- 2. Can help reduce the incidence of type II error for small batch sizes
- 3. **Issue:** what is the (most) appropriate scaling to tell apart two different stochastic processes?

Answer: May need multiple scalings for use-cases.

Path scalings and type II errors

- 1. Since $\varphi(x) = x^k/k!$ is increasing in x, (larger) scaling has the effect of increasing the numerical size of higher-order signature terms.
- 2. Can help reduce the incidence of type II error for small batch sizes
- 3. **Issue:** what is the (most) appropriate scaling to tell apart two different stochastic processes?

Answer: May need multiple scalings for use-cases. Solution: An adversarial (GAN) structure may be needed to run through the most challenging scalings to create realistic data (ongoing Zach Issa ...) Dealing with Uncertainty: Pricing (path dependent) payoffs with the help of the MMD (link) with A. Alden, C. Ventre, G. Lee, 2022.

・ロト・日下・モー・モー ショー ショー

Dealing with Uncertainty: Pricing (path dependent) payoffs with the help of the MMD (link) with A. Alden, C. Ventre, G. Lee, 2022.

Solution:

Estimate simultaneously from multiple angles to sharpen perspective (estimate MMD to several reference points/models)

Pricing path dependent payoffs with the help of the MMD

To obtain the price of a derivative priced under the stochastic process \mathbb{Y} :

- Select N base processes as reference models (satellites).
- Compute the distance from 𝒱 to each base process (distance to satellites).
- Use these distances to price (GPS location).

Adapted from Walcott, K. (2012) Three-dimensional graphics with PGF/TiKZ [67] and Trzeciak, T. (2008) Example: Stereographics and cylindrical map projections (https://texample.net/tikz/example.s/map-projections/) [64]

Image: Andrew Alden

Pricing path dependent payoffs with the help of the MMD

Distance-Based Framework for Derivative Pricing

A D F A B F A B F A B F

Introducing robustness into Deep Hedging/ Deep Trading with the help of pathwise similarity metrics (MMD)

Introducing robustness into Deep Hedging/ Deep Trading with the help of pathwise similarity metrics (MMD)

Robust Hedging Gans (link) with Y. Limmer, 2023. Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals with O. Futter and M. Wiese, 2023 (link).

Introducing robustness into Deep Hedging/ Deep Trading with the help of the MMD

Robust Hedging Gans, with Y. Limmer, 2023 (link). Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals with O. Futter and M. Wiese, 2023 (link).

Robust Hedging Gans

- (1) **Data availability:** In many real situations, there is very limited data available for training/estimation). ⇒ small datasets may induce higher estimation errors.
- (2) **Computational limitations:** Some limitations imposed on datasets (real & synthetic) by computational- and memory considerations (examples later).
- (3) Data changes over time: Markets are heteroskedastic and non-stationary ⇒ may be a possible reason for (1) limitations in (training) data availabliblty ⇒ large changes in the data may require retraining / changing the network, but...

...small changes in data & estimation errors should not throw the application off track. Needed: Appropriate (smooth) robustification of tasks towards small changes in input

Robust Hedging Gans

In the context hedging and trading strategies, the (pathwise) MMD can be helpful to introduce a smooth ambiguity-aversion effect into the hedging / trading objective.

Introducing robustness into DH/DT with the MMD

The original objective of a trading can be (most generally) given as

$$\max_{(\phi_t)_{t\in[0,T]}} \mathbb{E}\Big[U(V_T)\Big], \quad \text{where} \quad V_T = \sum_{m=1}^d \int_0^T \phi_t^m dS_t^m,$$

・ロト・日本・日本・日本・日本・日本・日本

where V_T is the terminal profit and loss of our trading strategy.

Introducing robustness into DH/DT with the MMD

The original objective of a trading can be (most generally) given as

$$\max_{(\phi_t)_{t\in[0,T]}} \mathbb{E}\Big[U(V_T)\Big], \quad \text{where} \quad V_T = \sum_{m=1}^d \int_0^T \phi_t^m dS_t^m,$$

where V_T is the terminal profit and loss of our trading strategy. Robustify: Extend the set of possible models, but restrict this set to make it feasible. Often robustification entails allowing alternative models within a δ -ball $B_{\delta}(\mathbb{P})$ around \mathbb{P} .

$$\max_{(\phi_t)_{t\in[0,T]}} \min_{\mathbb{Q}\in B_{\delta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}}\Big[U(V_{\mathcal{T}})\Big],$$

Implicit: All alternative models $\mathbb{Q} \in B_{\delta}(\mathbb{P})$ are equally likely to materialize.
Introducing robustness into DH/DT with the MMD

The original objective of a trading can be (most generally) given as

$$\max_{(\phi_t)_{t\in[0,T]}} \mathbb{E}\Big[U(V_T)\Big], \quad \text{where} \quad V_T = \sum_{m=1}^d \int_0^T \phi_t^m dS_t^m,$$

where V_T is the terminal profit and loss of our trading strategy. Robustify: Extend the set of possible models, but restrict this set to make it feasible. Our approach to robustification: Smoother version of model ambiguity via MMD

$$\max_{(\xi_t)_{t\in[0,T]}} \min_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}^{\mathbb{Q}}\Big\{U(V_{\mathcal{T}}) + \frac{1}{\eta}d(\mathbb{P},\mathbb{Q})\Big\},\$$

where $d(\mathbb{P}, \mathbb{Q})$ denotes the (MMD) distance of a realised model $\mathbb{Q} \in \mathcal{Q}$ to our reference model \mathbb{P} and $\frac{1}{\eta}$ is a scaling parameter representing the investor's aversion to model ambiguity. Taking $d(\cdot, \cdot)$ as the Sig-MMD allows to take a fully pathwise perspective.

Key: Similarity metric and possible applications

Truncated signature MMD [BHLPW'20] (see more details later) 1st market gen
(2),(3) Higher rank sig-kernel (with kernel trick) [HLLMS'22] comp, [HI'23] regime det
(4) Kernel Scoring Rules [IHLS'23] significantly improved conditional market gen

Non-Adversarial Training of Neural SDEs with Signature Kernel Scores: Issa, H., Lemercier, Salvi '23

- Components:
 - A generator $G_{\theta} : \Theta \times \mathcal{Z} \to \mathcal{X}$
 - A discriminator $D : \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}$, and
 - A training procedure.
- ▶ In the case where the discriminator is parametrized, $D = D_{\phi}$, and training objective is adversarialized (which it is not), we recover the classic GAN:

(Generator)

Non-Adversarial Training of Neural SDEs with Signature Kernel Scores: Issa, H., Lemercier, Salvi '23

Components:

- A generator $G_{\theta} : \Theta \times \mathcal{Z} \to \mathcal{X}$
- ▶ A discriminator $D : \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}$, and
- A training procedure.

▶ In the case where the discriminator is parametrized, $D = D_{\phi}$, and training objective is adversarialized, we recover the classic GAN [GAMX+'20]

► Goal: a plug-and-play pipeline for training market gen. on path space, which is

- mesh-free,
- stable,
- memory efficient,
- easily able to be conditionalized, and
- can handle inputs/outputs taking values in infinite-dimensional spaces

Related work: Application to MG

[BHLPW'20]: VAE-based conditional generative model using the truncated signature MMD. Required signature inversion.

[K'21]: SDE-GAN, adversarialising the training objective via a Neural CDE. Class conditioning examples.

[NSzSXW'21]: Sig-Wasserstein Gans for Time-series Generation. Training Log-RNN, AR-FNN generator against the Sig-Wasserstein distance.

- Again uses truncation of the signature
- Conditioning examples make use of on relationship between past truncated signature and future which is hard to recreate in practice

[WWPKBMB'21]: Multi-asset spot and option market simulation, 2021. Not mesh-free, and not conditional (mentioned as a future extension)

Non-adversarial training of Neural SDEs

The training objective is

$$\min_{\theta} \mathcal{L}(\theta) \quad \text{where} \quad \mathcal{L}(\theta) = \mathbb{E}_{y \sim \mathbb{P}_{X^{\mathsf{true}}}}[\phi_{\mathsf{sig}}(\mathbb{P}_{X^{\theta}}, y)] + \lambda \left\|\theta\right\|_{L_{2}}$$

▶ The training objective is minimised when $\mathbb{P}_{X^{\theta}} = \mathbb{P}_{X^{\text{true}}}$ (since strictly proper sr)

Training procedure can be summarized by

Generator: $X^{ heta} pprox \mathsf{SDESolve}(heta),$

Discriminator: $\mathcal{L}(\theta) \approx \mathsf{PDESolve}(X^{\theta}, X^{\mathsf{true}}).$

- Both procedures are able to be backpropagated through
 - **Generator:** Through the SDE solver
 - Discriminator: Via solving another system of adjoint PDEs [LSCBDL'21]

Experiments: rBergomi model

Goal: Train a Neural SDE to learn the rough stochastic volatility model $dy_t = -\frac{1}{2}V_t dt + \sqrt{V_t} dW_t$ where $d\xi_t^u = \xi_t^u \eta \sqrt{2\alpha + 1}(u - t)^{\alpha} dB_t$.

Figure 1: Neural SDE trained with ϕ_{sig} where $X^{true} \sim rBergomi(\eta, \rho_{\overline{s}}H)$.

Experiment: Currency pairs EUR/USD and USD/JPY

Figure 2: Neural SDE trained with ϕ_{sig} , EUR/USD and USD/JPY price pairs

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ⊙

Experiments: Conditional generation EURUSD

- ▶ Conditioning variables are time-augmented EUR/USD trajectories $\mathbb{Q} \sim x : [t_0 dt, t_0] \rightarrow \mathbb{R}^2$
- ▶ Target variables: future trajectories $\mathbb{P}(\cdot|x) \sim X^{\text{true}} : [t_0, t_0 + dt'] \rightarrow \mathbb{R}^2$
- Encode conditioning variables via the order 5 log-signature of the input trajectories
- ▶ Train to minimise the conditional expected signature kernel score
- Many hyperparameters to consider... in general, path scaling is the most important (same is true for previous case!)

Experiments: Conditional generation EURUSD

Given a conditioning path $x \sim \mathbb{Q}$, the generator provides (in blue) the conditional distribution $\mathbb{P}_{X^{\theta}}(\cdot|x)$. The dotted line gives the true path. $y \sim \mathbb{P}_{X^{\text{true}}}(\cdot|x)$.

Resultant path is often captured in the envelope of the associated conditional distribution

Experiment: Limit order books

Train a Neural SPDE model on NASDAQ LOB data, composing the signature kernel with three different SE-T type kernels

KS test average scores for each spatiotemporal marginal, 100 runs, NASDAQ data.

Thank you for your attention!

