Mini-symposium on Climate risk and financial risk impact

@ Aurélien Alfonsi (Ecole des Ponts, France): “Risk valuation of quanto
derivatives on temperature and electricity.”

o Florian Bourgey (Bloomberg, USA): “Climate risk assessment of a large-sized
credit portfolio”

o Elisa Ndiaye (Ecole Polytechnique and BNP Paribas, France): “Optimal
business model adaptation plan for a company under a transition scenario”

o Jorg Miiller (Chemnitz, Germany): “Credit value-at-risk in the context of
ESG”

Special thanks to Ying Jiao (ISFA, Lyon) for having organized this session.
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N
Introduction

@ Climate change leads to a growing demand for risk transfer instruments, in
order to hedge against its consequences.

o Weather derivatives emerged in the 1990s to deal with the risk on
temperature, drought, etc.

@ Slowdown of the weather derivatives market after the subprime crisis, that is
also due to the birth on new hybrid derivatives combining weather and
energy: the quantos.
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N
Introduction

@ Climate change leads to a growing demand for risk transfer instruments, in
order to hedge against its consequences.

o Weather derivatives emerged in the 1990s to deal with the risk on
temperature, drought, etc.

@ Slowdown of the weather derivatives market after the subprime crisis, that is
also due to the birth on new hybrid derivatives combining weather and
energy: the quantos.

Need for modelling dependence :
in this talk, for electricity spot price (e*t);>o and temperature (T});>o
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|
What are quanto derivatives?

Contract structure:
@ A weather index : we consider here the daily temperature T,
@ An energy price index : we consider here the daily average spot price
St = €Xt,

@ A payoff depending on the product of two payoff functions fs and fr

Payoff :=_ fs(Sy) x fr(Ty).

t=t1

Main interest: hedge against both

@ volumetric risk (e.g. higher electricity demand due to heating/cooling),

@ price risk.
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|
What are quanto derivatives?

Contract structure:
@ A weather index : we consider here the daily temperature T,
@ An energy price index : we consider here the daily average spot price
St = €Xt,

@ A payoff depending on the product of two payoff functions fs and fr

Payoff :=_ fs(Sy) x fr(Ty).

t=t1

OTC Market, no liquid assets on temperature derivatives:
@ We propose a real world model.

@ Risk valuation under historical probability.

A. Alfonsi (Ecole des Ponts) 4/31 4th April, 2024  4/31



|
Outline of The Talk

© A Joint Model for Electricity and Temperature

@ Estimation of the model on market data

© Handling the risk of quanto derivatives

© Summary
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|
Data for our study

From 5th January 2015 to 31st December 2018

Markets Energy data Weather data
Day ahead prices .
France from ENTSO-E Paris
Charles de Gaulle
Transparency Platform
PUN Milano
North Italy from Gestore .
Linate
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A Joint Model for Electricity and Temperature

Outline

@ A Joint Model for Electricity and Temperature
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A Joint Model for Electricity and Temperature

The joint model for (X, T})i>0

A coupled model for electricity spot (log)price (X;);>o and average
temperature (7});>¢

{d(xt —ux(0) = —rx (X = px () +dordWI HdLE

ATy — prt) = —rr(Ty — pr(t) + ordWi

where

o ux,pr : Ry — R represent the trend and seasonality component,

@ kx, kT > 0 correspond to the mean-reverting (or autoregressive) behaviour,
o WT Brownian notion, L* NIG Lévy noise, independent,
o

A € R dependence parameter.
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A Joint Model for Electricity and Temperature

The joint model for (X, T})i>0

A coupled model for electricity spot (log)price (X;);>o and average
temperature (7});>0

d(Xt — ﬂx(t)) = —Hx(Xt — ,ux(t)) + )\O’TthT + stX (ETM)
AT, — pr(t)) = k(T — pr(t) + ordW
Advantages

@ Convincing marginals on both underlyings.
@ Integrates dependence structure.

@ Maintains autoregressive behaviour.

°

Tractable model:

o Ease to estimate,
e Semi explicit formulas for useful expectations.
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A Joint Model for Electricity and Temperature

Marginal model for log spot electricity price (X3)i>o

A model inspired by Benth and Benth (2004)

d(X; — px (D) = —rx (X; — px (8)) + +dL¥

where

@ The deterministic seasonality function px
. X,DoW
px (t) = Bt + a7 sin(&t) + By cos(ét) + aDoVT?(t)

where { = 2% and DoW (t) = | £] mod p =7,
@ kx > 0 corresponds to the mean-reverting parameter,

o LX is a Normal Inverse Gaussian Lévy process of parameters
X
(X, X, 6%, mX), centered (m~ + 6X5—X =0.).
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A Joint Model for Electricity and Temperature

Marginal model for log spot electricity price (X3)i>o

Sample quanties
Sample quanties

En 2 00 o 0% ER R [ o 02 )
Theoretcal quantiies Theoretcal quanties

Figure: Quantile quantile plots for residuals compared with a theoretical quantiles of a
normal inverse gaussian distribution for French energy (left) and North Italian Energy
(right).
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A Joint Model for Electricity and Temperature

Marginal model for average temperature (7)o

A well established model developed by Benth et al. (2007)

d(T; — pr(t) = —rr(Ty — pr(t) + ordWy"

where

@ The deterministic trend and seasonality function pp:

2
pr(t) = af + Bt + af sin(&t) + BY cos(ét), where &€ = %

@ rp corresponds to the mean-reverting parameter,

e WT is a Brownian motion and o7 > 0 to the standard deviation of the noise.
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A Joint Model for Electricity and Temperature

Marginal model for average temperature (7)o

auanties

Sample.
Sample.

% 3 £ 1) [ 3 3
Theoretical quanties Theoretical quanties

Figure: Quantile quantile plots for residuals compared with a theoretical quantiles of a
normal distribution for Paris temperatures (left) and Milan temperatures (right).
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Outline

@ Estimation of the model on market data
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Estimation of the model on market data

Estimation procedure

Estimation in 5 steps

o=

Mean-reverting terms x and u(-)
or

Dependence parameter A

NIG parameters of LX
Goodness of fit of Model (ETM)

A. Alfonsi (Ecole des Ponts)
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CLSE

MLE

Observed covariance
CLSE on CF

x2-test goodness of fit
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Estimation of the model on market data

1. Estimation of x and u(-)

We estimate x and p(-) through Conditional Least Square (CLS), Klimko and
Nelson (1978):

N—
min Z (X(iJrl)A - E[X(i+1)A|XiA])2 )

N7a7 .
A =0
is given, if 7j2 € (0,1), by
Rx = —1Inns
aX —
By = 11—, R
ax _ fg(cos(¢A)—eFX 2) 4y sin(¢A)
! (cos(6A)—e ™ RX D)2 1 cin2(A)
5 _ Aalcos(€A)—eTRX D)5y sin(ea)
1XDoW (C“(EA)_PinXA)%me“;(&A) (6—FAx A
ag = —=taxa La—o(i % = Po)e” X

where

>
Il

=0

N-1 -1 /N-1
(z ams;> (z zmxwm> ,
=0

with ;4 = (1A, X;a, sin(&iA), cos(§iA), (L{pow (ia)=j}Jo<j<s) € R* x {0,1}7.
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Estimation of the model on market data

2. Estimation of o

Let consider the integral of dynamics (7})¢>0 from Model (ETM), A > 0 and
Tt = Tt — ,LLT(t)

- - t+A
Typa = e "AT, +or / e rri=w g’
t

.2k A =2k A
NN(mT 1—e ,0’%1 < "

prYe 2k
= Easy to estimate through Maximum Likelihood Estimation (MLE).

Results
Market mT 52,

France 10-15 2413
North Italy 10716 1.846

Table: Parameter estimation through the maximum likelihood estimation for dynamic of

temperature normally distributed for Paris and Milan temperature.
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Estimation of the model on market data

3. Estimation of the dependence parameter of A

Estimation of )\
From Model (ETM),

< kx + Rt =
A= 52.(1— ef(f%XJrFaT)A)COU
Results
Market A
France —0.007

North Italy —0.002

Table: Estimated A of Model (ETM) for France and North Italy.

However, there is a dependency on quantile based contingency tables

197 | 162 | 126 165 | 173 | 149
163 | 160 | 162 176 | 147 | 163
124 | 163 | 197 145 | 166 | 175

Table: Observed frequencies by couple tercile for French (left) and ltalian (right) coupled
data.
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Estimation of the model on market data

3. Estimation of the dependence parameter of A

Estimation of )\
From Model (ETM),

< kx + Rt =
A= pEaT. ef(f%XJr/%T)A)COU
Results
Market ‘ A ‘ Asrum Ajsa
France —0.007 | —0.0175 0.0119
North ltaly | —0.002 | —0.0136  0.008

Table: Estimated A of Model (ETM) for France and North Italy.

However, there is a dependency on quantile based contingency tables

197 | 162 | 126 165 | 173 | 149
163 | 160 | 162 176 | 147 | 163
124 | 163 | 197 145 | 166 | 175

Table: Observed frequencies by couple tercile for French (left) and ltalian (right) coupled
data.
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Estimation of the model on market data

4. Estimation of the NIG parameters for (X;):>

We apply CLS estimation applied to the (conditional) characteristic function:

X —RXAX S 1a2,21=e XA o 2
minimize: Z Z et Xira=—e e 27 TRy p(u; A)| (1)
u  t=
t+A e—hX (t+A—v) X
where ¢ the characteristic function of dL;
. xl—erxA _ A
o(u;A) = exp | ium™ ———— 4 5y A — 5 / \/(&X (B + tue—rx (t+A=v))2 4y
RX
(2

Results

9.43% and 4.34% of the standard deviation of the random term of the log energy
spot price is explained by the temperature component for France and North Italy
respectively.
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Figure: p — value = 0.219 Figure: p — value = 0.892

Figure: p — value = 0.616 Figure: p — value = 0.124
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Handling the risk of quanto derivatives

Outline

© Handling the risk of quanto derivatives
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Handling the risk of quanto derivatives

Characterisation of quanto derivatives

Quanto payoff:
ta
Payoff =Y _ fs(Sy) x fr(T3)
t=t,
In particular, for

Single-sided  Double-sided

Futures  Swaps . .
P options options

fs(St) Sy (St —9) St (Sy—S)*
fr(Ty) T (T-T) (T-T)" (T —-T)*

Application: T = 18°C (definition of HDD) and S = 50 EUR/MWh.
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Handling the risk of quanto derivatives

Valuation of quanto derivatives

Explicit or semi-explicit formulas for:

E <Z fs(8t) x fT(Tt)>

t=t,
Monte Carlo simulations (simulation scheme)

oy A .
Xipa =px(t+A)+e "XA(X, — ux () + Aory/ %Nl ferxA/2zX

i _ —2kpA
Tipa  =pr(t+A) +e "TA(T, — pr(t) + ory/ 25T (pN1 + /T = p?N2),

where Ni ~ N(0,1), Ny ~ N(0,1) and Z¥ ~ NIG(a™, 5%, 6%, — 67

~
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Handling the risk of quanto derivatives

Pricing quanto derivatives

For double sided quanto options we suggest a first order Taylor 's expansion on
A fort e [tl,tg}

t2

Qtr,t2) = > (Ebo((st =8 Fip) x <(T — pr(t) — e T — i (t0)) ) X

t=t1

T — pp(t) — e "TE—00) (T, — pup(to))
q>( orkr(t —to) ° )

orkr(t —to) 1T —pr(t) — e "TETP0N(Ty ) — pp(to)) \ 2
+Tex (_5( UTkT(t_tO)O )>>
7(W1A:0((St = 8) | Fig) + SPao (Se 2 5| Fry) ) %

. 2y (T = pr(t) = =110 (T4 — g (t0)
okxr(t — o)’ ®( S ))A) +on

where ® is the cumulative distribution function of the standard Gaussian
distribution, k7 (-) , kx(-) and kxr(:) are defined in function of kx and k.
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Handling the risk of quanto derivatives

Pricing quanto derivatives

For double sided quanto options we suggest a first order Taylor 's expansion on
A fort e [tl,tg}

t2

Qtr,t2) = Yy (EA:U((St =8t | Fiy) x ((T —pr(t) — e "TUTRN (T MT(tO))) X

t=t1
<1>(T pr () — e rrto (T *#T(tO)))
UTkT(t—to)

" orkr(t — to) exp ( 1 (T — pr(t) — e "TEt) (T, — MT(tU)))2)> (3)

2 2 O'T]CT(t — to)
= (Bazo((St = 8)F | Fug) + 8Paco (50 > 5| Fiy) ) X

7 ur(t) — e—ﬁT(f*iO)(Tto - #T(to))))/\> + o(\)

2 2
k t—t o]
opkxr( 0) ( “orkr(t — to)

where Ey_o((S; — S)T | F,) is computed through Carr Madan formula and
Pr—o (St >S5 .7:15()) through Gil-Pelaez inversion.
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Figure: On the left, Quanto prices computed with 100,000 simulations Monte Carlo
(blue) and semi-explicit (green) methods. On the right, Expansion without the first order
term (i.e. formula with A = 0). Each contract lasts a month of 2018. Time to
corresponds to 30 days ahead of the first day of the month, ¢; to the first day of the
month and t2 to the last day of the month.
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Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for A > 0, let consider the portfolio:

g = 0 1 = 2 a
(St4a — S)+(T - Tt+A)+ - dt,t+A 7dt,t+A (T - Tt+A)+ 7dt,t+A (St+a — S)+
N—— N e —— N———

double-sided option quanto cash single HDD call on spot
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Handling the risk of quanto derivatives

Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for A > 0, let consider the portfolio:

— —_ — — 2
E[((Stra =TT = Tera)t —df pyn = di pa (T = Tira)" = a(Seva = S)7) |17,
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Handling the risk of quanto derivatives

Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for A > 0, let consider the portfolio:

— — — . 2
E[((Stra = $)N(T = Tera)t —df yyn = di a0 = Tiva) " =} a(Seva = 8)7) |17,

(d? s n>di 4 nsd7 4 o) Minimising the above quadratic criterion is the unique
solution of the linear system below:

1 E(T — T, a)* | F) El(Stya — S| Ft) i tia
E(T — Ty )t | Fi E(T — Ty a) ") Fi) E(Stia = SYNT — Te )" | Fel| |dy g
E(Stia = )N Ft]  E(Stia — NI = Ty 0)* | Fi E[((Stia — S| Ft) % tea

E[(Stya — S)TT — Ty a) " | Fel
= |El(Stia — S)TUT — Tpn) ™| Fi)

E[((Stin — YT — Ty )| Fy)
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Handling the risk of quanto derivatives

Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for A > 0, let consider the portfolio:

— — _ — 2
E[(Siva =TT = Tira)* —d) a = d} pa(T = Txa)* =&} a(Siva = HF) 7).

(d? 14 n>d} 14 nsd7 ;. A) minimising the above quadratic criterion is the unique
solution of the linear system below:

1 E(T — Tt p)" | Ftl E[(Stea — ST Ft] A toa
E(T — Tgya)" | Fe) E((T — Tg ) ") Fel E[(Stia — HYNT = T, )| Fel| |dy ¢
E[(Stia — S)TIFt]  El(Stia — HNT — Ty n)" | Fel E[((Stra — )| F¢) N

E[(Stia — S)NT — Ty a) | Ftl
= [El(Stia — HTUT — T )| Fy)

E[((Stan — DT — Ty )| Fe

Computed through first order Taylor expansion in A, Carr Madan formula and
Gil-Pelaez inversion formula.
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Handling the risk of quanto derivatives

Static hedging of quanto derivatives
Monthly double-sided quantos
Let know consider the monthly portfolio:

31

40
Z(St1+1A ST @1y, i) T=d)) o b m1ya—dig ey +G—1ya T—Te 4id) T =dZ 1 o 1ya Sty yia—5T
i=

and perform daily hedging as above to get:

Without Hedging Hedging Without Hedging Hedging

hedging A =0 hedging A=0
January —3, 358 0.208 —93.072 January 2,197 391 394
May —89.174 —0.113 —12.283 May 177 98 100

Table: Average (left) and standard deviation (rlght) of -

S dgo,tﬁ(zqm + dtg,t1+(zfl)A(T Tiy+in)™ +d2 4 v i-ya(Se+ia = 8)F —
(Sty+ia — S)T(T — Ty 4ia) T for portfolio optimisation starting on 1st January 2018 and
1st May 2018 (for t1), with to = ¢1 — 30 and lasting the whole month.
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Figure: Empirical density of 3% —(Shy4in — S) (T — T4y +in)™ (blue) and

S dgo,t1+(z na + dtg,t1+(z 1)A(T Ty vin)t +d7 v i1ya(Stvia — )T —
(Sty+ia — S)T(T — Ty, 1ia) T (green) for portfolio optimisation starting on 1st January
2018 (for ¢1 on the left) and 1st May 2018 (for ¢; on the right), with ¢ = ¢; — 30 and
lasting the whole month.
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Outline

@ Summary
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Summary

Develop a combined model for daily average temperature and electricity price.
—> Enables to understand risk related to coupled options.

Overpass estimation challenges thanks to MLE and CLSE on characteristic
function.

Obtain explicit and semi-explicit formulas for futures, swap, single-sided and
double-sided options.

@ Show risk hedging capacity of single-sided (£-HDD) and double-sided quanto
options.
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Summary

Thank you for your attention!
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