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A paradigm shift in mathematical finance

‘Old’ paradigm:

You are given the model and your task is to compute option prices, value-at-risk, . . .

‘New’ paradigm:

You are not given the model and your task is to say something about option prices,
value-at-risk, . . . ⇝ compute bounds
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A paradigm shift in mathematical finance, II

parameters

models

measures

Model-specificModel-free
information

uncertainty
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Motivation
Coin tossing / Dice rolling

We are rolling two dices D1,D2 and are interested in the distribution of the sum.

Simplest choice: D1 and D2 are independent dices
Choices with dependent dices:

D1, D2 = D1 (comonotonicity)
D1, D2 = 7 − D1 (countermonotonicity)
D1, D2 = D1 + 1 (“permutation”)
. . .

▶ Dependence uncertainty: the marginal distributions are known, the
dependence structure is not known
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Motivation
Random variables

(X1, . . . , Xd): random variables with marginal distributions (F1, . . . , Fd)

Dependence structure: determined by joint distribution F or copula C

Sklar’s Theorem: given F , F1, . . . , Fd , there exists C s.t.

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all x ∈ Rd

Dependence uncertainty: the marginal distributions are known, the dependence
structure is not known

▶ Main question: f ‘nice’ function, compute

inf{EC [f ] : C copula} and sup{EC [f ] : C copula}

Recently, the problem was reformulated under additional constraints by Tankov

inf / sup {EC [f ] : C copula + partial information on C}

Math Finance: d’Aspremont, Bertsimas, Deelstra, Denuit, Hobson, Laurence, Vyncke,
Wang, . . .

QRM / Insurance Math: Bernard, Embrechts, Puccetti, Rüschendorf, Vanduffel, Wang,
. . .
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Improved Fréchet–Hoeffding bounds
T. Lux

Theorem

Let S ⊆ Id be a compact set and Q∗ be a d-quasi-copula. Consider the set

QS,Q∗
:=

{
Q ∈ Qd : Q(x) = Q∗(x) for all x ∈ S

}
.

Then it holds that

QS,Q∗
(u) ≤ Q(u) ≤ QS,Q∗

(u) for all u ∈ Id

and QS,Q∗
(u) = Q(u) = QS,Q∗

(u) for all u ∈ S
(1)

for all Q ∈ QS,Q∗
, where the bounds QS,Q∗

and QS,Q∗
are provided by

QS,Q∗
(u) = max

(
0,

d∑
i=1

ui − d + 1,max
x∈S

{
Q∗(x)−

d∑
i=1

(xi − ui)
+
})

QS,Q∗
(u) = min

(
u1, . . . , ud ,min

x∈S

{
Q∗(x) +

d∑
i=1

(ui − xi)
+
})

.

(2)

Furthermore, the bounds QS,Q∗
,QS,Q∗

are d-quasi-copulas.

7 / 29



Improved Fréchet–Hoeffding bounds, II

S

Figure: Illustration of the set S.
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Questions — open problems

1 The ‘nice’ functions are ∆-tonic — basket options are excluded . . .

2 The improved Fréchet–Hoeffding bounds are not sharp for d > 2, although . . .
Tankov showed that they are copulas for d = 2,
Bernard et al. strengthened this result (d = 2).

Are they pointwise sharp, e.g. Q(u) = supQ∈Q⋆
Q(u)?

3 The marginals are known. Is that realistic?
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Outline
D. Bartl, M. Kupper, T. Lux, S. Eckstein
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Transport and relaxed transport duality

Aim: upper bound – superhedging strategy for f (X)⇝ E[f (X)]

Classical ingredients:

ψ1, . . . , ψd : R → R bounded, measurable functions (‘put options’)

ν1, . . . , νd marginal distributions, µ joint distribution

Then

sup
µ∈...

∫
f dµ = inf

{∫
ψ1dν1 + · · ·+

∫
ψd dνd : ψ1 + · · ·+ ψd ≥ f

}

New ingredients

πi price of multi-asset digital 1Ai , Ai =×d
j=1(−∞,Ai

j], i ∈ I

ai amount invested in 1Ai
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Transport and relaxed transport duality, II

S

Ai

s

Figure: Illustration of the relation between the sets S and (Ai)i∈I .
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Questions — open problems

1 The additional information is not stemming from traded assets, i.e.
multi-asset digital options are not (liquidly) traded . . .

2 Can we replace the additional information with traded asset prices, e.g.
basket options?
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E. Dragazi, S. Liu
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Transport duality under option-implied information

Aim: upper bound – superhedging strategy for f (X)⇝ E[f (X)]

Classical ingredients:

ψ1, . . . , ψd : R → R bounded, measurable functions (‘put options’)

ν1, . . . , νd marginal distributions, µ joint distribution

Then

sup
µ∈...

∫
f dµ = inf

{∫
ψ1dν1 + · · ·+

∫
ψd dνd : ψ1 + · · ·+ ψd ≥ f

}

New ingredients

pi price of multi-asset option with payoff ϕi

bi amount invested in ϕi
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Transport duality under option-implied information, II

“Primal” side: consistent measures

Q =

{
µ ∈ P(Rd) : µj = νj, j ∈ J , and

∫
Rd
ϕidµ = pi, i ∈ I

}

“Dual” side: trading strategies and cost

Θ(f ) =
{
(ψ, b) :

∑
j∈J

ψj +
∑
i∈I

biϕi ≥ f
}

π(ψ, b) =
∑
j∈J

∫
R
ψjdνj +

∑
i∈I

bipi

Definition

A trading strategy (ψ, b) that satisfies

(ψ, b) ∈ Θ(ϵ) and π(ψ, b) =
∑
j∈J

∫
R
ψjdνj +

∑
i∈I

bipi ≤ 0

for some ϵ > 0, is called uniform strong arbitrage.
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Transport duality under option-implied information, III

Theorem (Fundamental Theorem)

There does not exist a uniform strong arbitrage strategy in the market if and only if
the set Q is non empty.

Theorem (Superhedging Duality)

Let f : Rd → R be a continuous and bounded function. Assuming there does not exist
uniform strong arbitrage in the market, then

max
µ∈Q

∫
Rd

f dµ = inf
{
π(ψ, b) : (ψ, b) ∈ Θ(f )

}
=: Φ(f )
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Numerical scheme – penalization and neural networks
Eckstein & Kupper (AMO, 2019)

We would like to approximate the function

Φ(f ) = inf

{∑
j

∫
ψjdνj +

∑
i

bipi

∣∣∣∑ψj +
∑

biϕi ≥ f
}

Step 1: Neural network approximation

Φm(f ) = inf
ψj∈Hm

{∑
j∈J

∫
ψjdνj +

∑
i∈I

bipi :
∑
j∈J

ψj +
∑
i∈I

biϕi ≥ f
}
.

Step 2: Penalization

Φm
θ,γ(f ) = inf

ψj∈Hm

{∑
j∈J

∫
ψjdνj +

∑
i∈I

bipi +

∫
βγ

(
f −

∑
j∈J

ψj −
∑
i∈I

biϕi

)
dθ

}
.
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Numerical results, I
Convergence

3 assets; Black–Scholes dynamics with Gaussian copula

Additional information (ϕ) and payoff (f ): call-on-max, i.e.(
max(S1, S2, S3)− K , 0

)+

5000 10000 15000 20000
iterations

6
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)
Base
Case 1
Case 2
Case 3
Case 4
Reference

Figure: Bounds on option prices
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Numerical results, II
3 assets; impact of additional information

0 Base case: only the three marginal distributions are known.

1 Case 1: Base plus additional traded two-asset call-on-max options with payoff
function

ϕ1(x) =
(
x1 ∨ x2 − K

)+
, K = 6.

2 Case 2: Case 1 plus additional traded two-asset call-on-max options with
payoff function

ϕ2(x) =
(
x2 ∨ x3 − K

)+
, K = 6.

3 Case 3: Case 2 plus additional traded two-asset call-on-max options with
payoff function

ϕ3(x) =
(
x1 ∨ x3 − K

)+
, K = {5, 6, 7}.

4 Case 4: Case 3 plus additional traded three-asset call-on-max options with
payoff function

ϕ4(x) =
(
x1 ∨ x2 ∨ x3 − K

)+
, K = {5, 7}.
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Numerical results, II (cont’d)
3 assets; impact of additional information

5 Case 5: Base case plus 5 more options with payoff ϕ1 and strike prices
K = {6, 9, 11, 13, 15}.

6 Case 6: Case 5 plus 4 more options with payoff ϕ2 and strike prices
K = {6, 11, 13, 15}.

7 Case 7: Case 6 plus 5 more options with payoff ϕ3 and strike prices
K = {5, 6, 7, 11, 13}.

8 Case 8: Case 7 plus 2 more options with payoff ϕ4 and strike prices K = {5, 7}.
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Numerical results, II (cont’d)
3 assets; impact of additional information

2 4 6 8 10 12 14
strike price

0

2
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6

8
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n 
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Case 1
Case 2
Case 3
Case 4
Reference
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Reference

Figure: Model-free bounds for various strikes using Cases 1–4 on the left, and Cases 5–8 on
the right.
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Numerical results, III
6 assets; impact of additional information

0 Base case: only the six marginal distributions are known.

1 Case 1: Base plus call-on-min options with payoff (x1 ∧ · · · ∧ x6 − K)+ for 8
strike prices

K = {6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5}.

2 Case 2: Case 1 plus call-on-max options with payoff (x1 ∨ · · · ∨ x6 − K)+ for 8
strike prices

K = {6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5}.

3 Case 3: Case 2 plus basket options with payoff(1
5

∑
i

xi − K
)+

for i ∈ {1, . . . , 5}, i ∈ {2, . . . , 6}, i ∈ {1, 2, 3, 5, 6},

each with 8 strike prices K = {6.6, 7.6, 8.6, 9.6, 10.6, 11.6, 12.6, 13.6}.

23 / 29



Numerical results, III (cont’d)
6 assets; impact of additional information

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
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Figure: Model-free bounds for various strikes using the setting 0–3.
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Numerical results, III (cont’d)
6 assets; impact of additional information

4 Case 4: Base plus three put-on-min options with payoff (K − xi ∧ xj)
+ for

{i, j} ∈
{
{1, 2}, {3, 4}, {5, 6}

}
, each with 8 strike prices

K = {6.75, 7.75, 8.75, 9.75, 10.75, 11.75, 12.75, 13.75}.
5 Case 5: Case 4 plus call-on-min options with payoff (x1 ∧ · · · ∧ x6 − K)+ for 8

strike prices

K = {6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5}.
6 Case 6: Case 5 plus call-on-max options with payoff (x1 ∨ · · · ∨ x6 − K)+ for 8

strike prices

K = {6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5}.
7 Case 7: Case 6 plus basket options with payoff(1

5

∑
i

xi − K
)+

for i ∈ {1, . . . , 5}, i ∈ {2, . . . , 6}, i ∈ {1, 2, 3, 5, 6},

each with 8 strike prices K = {6.6, 7.6, 8.6, 9.6, 10.6, 11.6, 12.6, 13.6}.
8 Case 8: Base plus basket options with payoff(1

5

∑
i

xi − K
)+

for i ∈ {1, . . . , 5}, i ∈ {2, . . . , 6}, i ∈ {1, 2, 3, 5, 6},

each with 8 strike prices K = {6.6, 7.6, 8.6, 9.6, 10.6, 11.6, 12.6, 13.6}.
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Numerical results, III (cont’d)
6 assets; impact of relevant information
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Figure: Model-free bounds for various strikes using the setting 0, 4–8.
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Computational times

# Assets Time (sec)

6 498
15 921
18 1107

Table: Dimension vs computational time.
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