Model-free and data-driven methods in mathematical finance

Antonis Papapantoleon

Collaborators: E. Dragazi, S. Liu

International Conference on Computational Finance • Amsterdam • 2-5 April 2024

A paradigm shift in mathematical finance

A paradigm shift in mathematical finance

'Old' paradigm:
You are given the model and your task is to compute option prices, value-at-risk, ...

A paradigm shift in mathematical finance

'Old' paradigm:
You are given the model and your task is to compute option prices, value-at-risk, ...
'New' paradigm:
You are not given the model and your task is to say something about option prices, value-at-risk, ...

A paradigm shift in mathematical finance

'Old' paradigm:
You are given the model and your task is to compute option prices, value-at-risk, ...
'New' paradigm:
You are not given the model and your task is to say something about option prices, value-at-risk, ... \rightsquigarrow compute bounds

A paradigm shift in mathematical finance, II

Motivation

Coin tossing / Dice rolling

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

Motivation

Coin tossing / Dice rolling

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

- Simplest choice: D_{1} and D_{2} are independent dices

Motivation

Coin tossing / Dice rolling

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

- Simplest choice: D_{1} and D_{2} are independent dices
- Choices with dependent dices:
- $D_{1}, D_{2}=D_{1}$ (comonotonicity)
- $D_{1}, D_{2}=7-D_{1}$ (countermonotonicity)
- $D_{1}, D_{2}=D_{1}+1$ ("permutation")
- ...

Motivation

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

- Simplest choice: D_{1} and D_{2} are independent dices
- Choices with dependent dices:
- $D_{1}, D_{2}=D_{1}$ (comonotonicity)
- $D_{1}, D_{2}=7-D_{1}$ (countermonotonicity)
- $D_{1}, D_{2}=D_{1}+1$ ("permutation")
- ...
- Dependence uncertainty: the marginal distributions are known, the dependence structure is not known

Motivation

- $\left(X_{1}, \ldots, X_{d}\right)$: random variables with marginal distributions $\left(F_{1}, \ldots, F_{d}\right)$
- Dependence structure: determined by joint distribution F or copula C
- Sklar's Theorem: given F, F_{1}, \ldots, F_{d}, there exists C s.t.

$$
F\left(x_{1}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) \quad \text { for all } x \in \mathbb{R}^{d}
$$

- Dependence uncertainty: the marginal distributions are known, the dependence structure is not known
- Main question: f 'nice' function, compute

$$
\inf \left\{\mathbb{E}_{C}[f]: C \text { copula }\right\} \quad \text { and } \quad \sup \left\{\mathbb{E}_{C}[f]: C \text { copula }\right\}
$$

- Recently, the problem was reformulated under additional constraints by Tankov

$$
\inf / \sup \left\{\mathbb{E}_{C}[f]: C \text { copula }+ \text { partial information on } C\right\}
$$

- Math Finance: d’Aspremont, Bertsimas, Deelstra, Denuit, Hobson, Laurence, Vyncke, Wang, ...

■ QRM / Insurance Math: Bernard, Embrechts, Puccetti, Rüschendorf, Vanduffel, Wang,

Outline

T. Lux

Improved Fréchet-Hoeffding bounds

T. Lux

Theorem

Let $S \subseteq \mathbb{I}^{d}$ be a compact set and Q^{*} be a d-quasi-copula. Consider the set

$$
\mathcal{Q}^{S, Q^{*}}:=\left\{Q \in \mathcal{Q}^{d}: Q(\mathbf{x})=Q^{*}(\mathbf{x}) \text { for all } \mathbf{x} \in S\right\}
$$

Then it holds that

$$
\begin{array}{lll}
& \underline{Q}^{S, Q^{*}}(\mathbf{u}) \leq Q(\mathbf{u}) \leq \bar{Q}^{S, Q^{*}}(\mathbf{u}) & \text { for all } \mathbf{u} \in \mathbb{I}^{d} \\
\text { and } & \underline{Q}^{S, Q^{*}}(\mathbf{u})=Q(\mathbf{u})=\bar{Q}^{S, Q^{*}}(\mathbf{u}) & \text { for all } \mathbf{u} \in S \tag{1}
\end{array}
$$

for all $Q \in \mathcal{Q}^{S, Q^{*}}$, where the bounds $\underline{Q}^{S, Q^{*}}$ and $\bar{Q}^{S, Q^{*}}$ are provided by

$$
\begin{align*}
& \underline{Q}^{S, Q^{*}}(\mathbf{u})=\max \left(0, \sum_{i=1}^{d} u_{i}-d+1, \max _{\mathrm{x} \in S}\left\{Q^{*}(\mathbf{x})-\sum_{i=1}^{d}\left(x_{i}-u_{i}\right)^{+}\right\}\right) \tag{2}\\
& \bar{Q}^{S, Q^{*}}(\mathbf{u})=\min \left(u_{1}, \ldots, u_{d}, \min _{\mathrm{x} \in S}\left\{Q^{*}(\mathbf{x})+\sum_{i=1}^{d}\left(u_{i}-x_{i}\right)^{+}\right\}\right) .
\end{align*}
$$

Furthermore, the bounds $\underline{Q}^{S, Q^{*}}, \bar{Q}^{S, Q^{*}}$ are d-quasi-copulas.

Improved Fréchet-Hoeffding bounds, II

Figure: Illustration of the set S.

Questions - open problems

1 The 'nice' functions are Δ-tonic - basket options are excluded ...
2. The improved Fréchet-Hoeffding bounds are not sharp for $d>2$, although ...

- Tankov showed that they are copulas for $d=2$,
- Bernard et al. strengthened this result $(d=2)$.

Are they pointwise sharp, e.g. $\bar{Q}(u)=\sup _{Q \in \mathcal{Q}_{\star}} Q(u)$?
The marginals are known. Is that realistic?

Outline

D. Bartl, M. Kupper, T. Lux, S. Eckstein

Transport and relaxed transport duality

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$

Classical ingredients:
$\square \psi_{1}, \ldots, \psi_{d}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')

- ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution

Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int \psi_{1} \mathrm{~d} \nu_{1}+\cdots+\int \psi_{d} \mathrm{~d} \nu_{d}: \psi_{1}+\cdots+\psi_{d} \geq f\right\}
$$

Transport and relaxed transport duality

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$

Classical ingredients:
■ $\psi_{1}, \ldots, \psi_{d}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')

- ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution

Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int \psi_{1} \mathrm{~d} \nu_{1}+\cdots+\int \psi_{d} \mathrm{~d} \nu_{d}: \psi_{1}+\cdots+\psi_{d} \geq f\right\}
$$

New ingredients

- π^{i} price of multi-asset digital $1_{A^{i}}, A^{i}=\times_{j=1}^{d}\left(-\infty, A_{j}^{i}\right], i \in I$
- a^{i} amount invested in $1_{A^{i}}$

Transport and relaxed transport duality, II

Figure: Illustration of the relation between the sets S and $\left(A^{i}\right)_{i \in I}$.

Questions - open problems

1 The additional information is not stemming from traded assets, i.e. multi-asset digital options are not (liquidly) traded ...
2 Can we replace the additional information with traded asset prices, e.g. basket options?

Outline

E. Dragazi, S. Liu

Transport duality under option-implied information

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$
Classical ingredients:

- $\psi_{1}, \ldots, \psi_{\boldsymbol{d}}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')
- ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution

Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int \psi_{1} \mathrm{~d} \nu_{1}+\cdots+\int \psi_{d} \mathrm{~d} \nu_{d}: \psi_{1}+\cdots+\psi_{d} \geq f\right\}
$$

Transport duality under option-implied information

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$
Classical ingredients:

- $\psi_{1}, \ldots, \psi_{d}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')
- ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution

Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int \psi_{1} \mathrm{~d} \nu_{1}+\cdots+\int \psi_{d} \mathrm{~d} \nu_{d}: \psi_{1}+\cdots+\psi_{d} \geq f\right\}
$$

New ingredients

- p_{i} price of multi-asset option with payoff ϕ_{i}
- b_{i} amount invested in ϕ_{i}

Transport duality under option-implied information, II

"Primal" side: consistent measures

$$
\mathcal{Q}=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right): \mu_{j}=\nu_{j}, j \in \mathcal{J}, \text { and } \int_{\mathbb{R}^{d}} \phi_{i} \mathrm{~d} \mu=p_{i}, i \in \mathcal{I}\right\}
$$

"Dual" side: trading strategies and cost

$$
\begin{aligned}
\Theta(f) & =\left\{(\psi, b): \sum_{j \in \mathcal{J}} \psi_{j}+\sum_{i \in \mathcal{I}} b_{i} \phi_{i} \geq f\right\} \\
\pi(\psi, b) & =\sum_{j \in \mathcal{J}} \int_{\mathbb{R}} \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i \in \mathcal{I}} b_{i} p_{i}
\end{aligned}
$$

Definition

A trading strategy (ψ, b) that satisfies

$$
(\psi, b) \in \Theta(\epsilon) \quad \text { and } \quad \pi(\psi, b)=\sum_{j \in \mathcal{J}} \int_{\mathbb{R}} \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i \in \mathcal{I}} b_{i} p_{i} \leq 0
$$

for some $\epsilon>0$, is called uniform strong arbitrage.

Transport duality under option-implied information, III

Theorem (Fundamental Theorem)

There does not exist a uniform strong arbitrage strategy in the market if and only if the set \mathcal{Q} is non empty.

Theorem (Superhedging Duality)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a continuous and bounded function. Assuming there does not exist uniform strong arbitrage in the market, then

$$
\begin{aligned}
\max _{\mu \in \mathcal{Q}} \int_{\mathbb{R}^{d}} f \mathrm{~d} \mu & =\inf \{\pi(\psi, b):(\psi, b) \in \Theta(f)\} \\
& =: \Phi(f)
\end{aligned}
$$

Numerical scheme - penalization and neural networks

Eckstein \& Kupper (AMO, 2019)

We would like to approximate the function

$$
\Phi(f)=\inf \left\{\sum_{j} \int \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i} b_{i} p_{i} \mid \sum \psi_{j}+\sum b_{i} \phi_{i} \geq f\right\}
$$

Numerical scheme - penalization and neural networks

Eckstein \& Kupper (AMO, 2019)

We would like to approximate the function

$$
\Phi(f)=\inf \left\{\sum_{j} \int \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i} b_{i} p_{i} \mid \sum \psi_{j}+\sum b_{i} \phi_{i} \geq f\right\}
$$

Step 1: Neural network approximation

$$
\Phi^{m}(f)=\inf _{\psi_{j} \in \mathcal{H}^{m}}\left\{\sum_{j \in \mathcal{J}} \int \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i \in \mathcal{I}} b_{i} p_{i}: \sum_{j \in \mathcal{J}} \psi_{j}+\sum_{i \in \mathcal{I}} b_{i} \phi_{i} \geq f\right\}
$$

Numerical scheme - penalization and neural networks

Eckstein \& Kupper (AMO, 2019)

We would like to approximate the function

$$
\Phi(f)=\inf \left\{\sum_{j} \int \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i} b_{i} p_{i} \mid \sum \psi_{j}+\sum b_{i} \phi_{i} \geq f\right\}
$$

Step 1: Neural network approximation

$$
\Phi^{m}(f)=\inf _{\psi_{j} \in \mathcal{H}^{m}}\left\{\sum_{j \in \mathcal{J}} \int \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i \in \mathcal{I}} b_{i} p_{i}: \sum_{j \in \mathcal{J}} \psi_{j}+\sum_{i \in \mathcal{I}} b_{i} \phi_{i} \geq f\right\}
$$

Step 2: Penalization

$$
\Phi_{\theta, \gamma}^{m}(f)=\inf _{\psi_{j} \in \mathcal{H}^{m}}\left\{\sum_{j \in \mathcal{J}} \int \psi_{j} \mathrm{~d} \nu_{j}+\sum_{i \in \mathcal{I}} b_{i} p_{i}+\int \beta_{\gamma}\left(f-\sum_{j \in \mathcal{J}} \psi_{j}-\sum_{i \in \mathcal{I}} b_{i} \phi_{i}\right) \mathrm{d} \theta\right\} .
$$

Numerical results, I

Convergence

- 3 assets; Black-Scholes dynamics with Gaussian copula

■ Additional information (ϕ) and payoff (f) : call-on-max, i.e.

$$
\left(\max \left(S^{1}, S^{2}, S^{3}\right)-K, 0\right)^{+}
$$

Figure: Bounds on option prices

Numerical results, II

0. Base case: only the three marginal distributions are known.

1 Case 1: Base plus additional traded two-asset call-on-max options with payoff function

$$
\phi_{1}(x)=\left(x_{1} \vee x_{2}-K\right)^{+}, \quad K=6 .
$$

2. Case 2: Case 1 plus additional traded two-asset call-on-max options with payoff function

$$
\phi_{2}(x)=\left(x_{2} \vee x_{3}-K\right)^{+}, \quad K=6
$$

${ }^{3}$ Case 3: Case 2 plus additional traded two-asset call-on-max options with payoff function

$$
\phi_{3}(x)=\left(x_{1} \vee x_{3}-K\right)^{+}, \quad K=\{5,6,7\}
$$

4 Case 4: Case 3 plus additional traded three-asset call-on-max options with payoff function

$$
\phi_{4}(x)=\left(x_{1} \vee x_{2} \vee x_{3}-K\right)^{+}, \quad K=\{5,7\}
$$

Numerical results, II (cont'd)

[5 Case 5: Base case plus 5 more options with payoff ϕ_{1} and strike prices $K=\{6,9,11,13,15\}$.
6 Case 6: Case 5 plus 4 more options with payoff ϕ_{2} and strike prices $K=\{6,11,13,15\}$.
7. Case 7: Case 6 plus 5 more options with payoff ϕ_{3} and strike prices $K=\{5,6,7,11,13\}$.

8 Case 8: Case 7 plus 2 more options with payoff ϕ_{4} and strike prices $K=\{5,7\}$.

Numerical results, II (cont'd)

3 assets; impact of additional information

Figure: Model-free bounds for various strikes using Cases 1-4 on the left, and Cases 5-8 on the right.

Numerical results, III

0 Base case: only the six marginal distributions are known.
1 Case 1: Base plus call-on-min options with payoff $\left(x_{1} \wedge \cdots \wedge x_{6}-K\right)^{+}$for 8 strike prices

$$
K=\{6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5\}
$$

2. Case 2: Case 1 plus call-on-max options with payoff $\left(x_{1} \vee \cdots \vee x_{6}-K\right)^{+}$for 8 strike prices

$$
K=\{6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5\}
$$

3 Case 3: Case 2 plus basket options with payoff

$$
\left(\frac{1}{5} \sum_{i} x_{i}-K\right)^{+} \text {for } i \in\{1, \ldots, 5\}, i \in\{2, \ldots, 6\}, i \in\{1,2,3,5,6\}
$$

each with 8 strike prices $K=\{6.6,7.6,8.6,9.6,10.6,11.6,12.6,13.6\}$.

Numerical results, III (cont'd)

6 assets; impact of additional information

Figure: Model-free bounds for various strikes using the setting 0-3.

Numerical results, III (cont'd)

6 assets; impact of additional information
4 Case 4: Base plus three put-on-min options with payoff $\left(K-x_{i} \wedge x_{j}\right)^{+}$for $\{i, j\} \in\{\{1,2\},\{3,4\},\{5,6\}\}$, each with 8 strike prices

$$
K=\{6.75,7.75,8.75,9.75,10.75,11.75,12.75,13.75\}
$$

5. Case 5: Case 4 plus call-on-min options with payoff $\left(x_{1} \wedge \cdots \wedge x_{6}-K\right)^{+}$for 8 strike prices

$$
K=\{6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5\}
$$

6 Case 6: Case 5 plus call-on-max options with payoff $\left(x_{1} \vee \cdots \vee x_{6}-K\right)^{+}$for 8 strike prices

$$
K=\{6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5\}
$$

7 Case 7: Case 6 plus basket options with payoff

$$
\left(\frac{1}{5} \sum_{i} x_{i}-K\right)^{+} \text {for } i \in\{1, \ldots, 5\}, i \in\{2, \ldots, 6\}, i \in\{1,2,3,5,6\}
$$

each with 8 strike prices $K=\{6.6,7.6,8.6,9.6,10.6,11.6,12.6,13.6\}$.
${ }_{8}$ Case 8: Base plus basket options with payoff

$$
\left(\frac{1}{5} \sum_{i} x_{i}-K\right)^{+} \text {for } i \in\{1, \ldots, 5\}, i \in\{2, \ldots, 6\}, i \in\{1,2,3,5,6\}
$$

each with 8 strike prices $K=\{6.6,7.6,8.6,9.6,10.6,11.6,12.6,13.6\}$.

Numerical results, III (cont'd)

6 assets; impact of relevant information

Figure: Model-free bounds for various strikes using the setting $0,4-8$.

Computational times

\# Assets	Time (sec)
6	498
15	921
18	1107

Table: Dimension vs computational time.

Bibliography

References

D. Bartl, M. Kupper, T. Lux, A. Papapantoleon, S. Eckstein:

Marginal and dependence uncertainty: bounds, optimal transport, and sharpness
SIAM Journal on Control and Optimization 60, 410-434, 2022
E. Dragazi, S. Liu, A. Papapantoleon:

Improved model-free bounds for multi-asset options using option implied information and deep learning
Preprint, arXiv:2404.02343
T. Lux, A. Papapantoleon:

Improved Frechét-Hoeffding bounds on d-copulas and applications in model-free finance Annals of Applied Probability 27, 3633-3671, 2017

