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A paradigm shift in mathematical finance

‘Old’ paradigm:

You are given the model and your task is to compute option prices, value-at-risk, ...

‘New’ paradigm:

You are not given the model and your task is to say something about option prices,
value-at-risk, ... ~» compute bounds
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A paradigm shift in mathematical finance, I

information
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Motivation

Coin tossing / Dice rolling

We are rolling two dices Dy, D, and are interested in the distribution of the sum.
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We are rolling two dices Dy, D, and are interested in the distribution of the sum.

>

m Simplest choice: Dy and D, are independent dices
m Choices with dependent dices:

m Dy, D, = D; (comonotonicity)

m Dy, D, = 7 — D; (countermonotonicity)
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Coin tossing / Dice rolling

We are rolling two dices Dy, D, and are interested in the distribution of the sum.

>

m Simplest choice: Dy and D, are independent dices
m Choices with dependent dices:

m Dy, D, = D; (comonotonicity)

m Dy, D, = 7 — D; (countermonotonicity)
» Dy, D, = Dy + 1 (“permutation”)
m ...

» Dependence uncertainty: the marginal distributions are known, the
dependence structure is not known
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Motivation

Random variables

(X, ..., X4): random variables with marginal distributions (Fy,. .., Fy)
Dependence structure: determined by joint distribution F or copula C
Sklar’s Theorem: given F, Fq, ..., Fy, there exists C s.t.

F(x1,. .., xg) = C(Fi(x),- .., Fa(xq)) forall x € RY

Dependence uncertainty: the marginal distributions are known, the dependence
structure is not known

Main question: f ‘nice’ function, compute

inf{Ec[f] : C copula} and sup{Ec[f]: C copula}

Recently, the problem was reformulated under additional constraints by Tankov

inf / sup {Ec[f] : C copula + partial information on C}

Math Finance: d’Aspremont, Bertsimas, Deelstra, Denuit, Hobson, Laurence, Vyncke,
Wang, ...

QRM / Insurance Math: Bernard, Embrechts, Puccetti, Rischendorf, Vanduffel, Wang,
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Improved Fréchet—Hoeffding bounds

T. Lux

Theorem
Let S C 19 be a compact set and Q* be a d-quasi-copula. Consider the set
o5 = {Q € @%: Q(x) = Q*(x) forallx € S}.
Then it holds that
Q¥ (u) < Qu) < Q%Y (u) forallu €1

S Q* (M
and Q% a” (u) = Q(u) = (u) forallues
forallQ € oS ’Q*, where the bounds QS'Q* and Q sa" are provided by
(3 few-3w-u))
QS’Q* (u) = max (0, Z ui—d+ 1, max{ Q*(x) — Z(X’ —u)t
i=1 HES i=1 )

QS,Q* (u) = min (u1,..',ud,iﬂ€i2{Q Z i —x;) })

Furthermore, the bounds QS*Q* ,65’0 are d-quasi-copulas.
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Improved Fréchet-Hoeffding bounds, Il

Figure: lllustration of the set S.
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Questions — open problems

The ‘nice’ functions are A-tonic — basket options are excluded ...

m Tankov showed that they are copulas for d = 2,
= Bernard et al. strengthened this result (d = 2).

Are they pointwise sharp, e.g. Q(u) = supgco, Q(u)?

The marginals are known. Is that realistic?
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The improved Fréchet-Hoeffding bounds are not sharp for d > 2, although ...
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Transport and relaxed transport duality

Aim: upper bound - superhedging strategy for f(X) ~ E[f(X)]

Classical ingredients:

® ¢Y1,...,9%q : R = R bounded, measurable functions (‘put options’)
m vy, ...,V marginal distributions, i joint distribution
Then

:g.p.o./fd,uzinf{/%dw+---+/¢ddud:w1+~~-+¢d2f}
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Aim: upper bound - superhedging strategy for f(X) ~ E[f(X)]

Classical ingredients:

® ¢Y1,...,9%q : R = R bounded, measurable functions (‘put options’)
m vy, ...,V marginal distributions, i joint distribution
Then

:g?./fduzinf{/%dm+---+/¢ddud:¢1+~~-+¢d2f}

New ingredients
m 7' price of multi-asset digital 1,;, A" = Xf=1(—oo,Aj':], i€l

m a amount invested in 1,
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Transport and relaxed transport duality, Il

Y

Figure: Illustration of the relation between the sets S and (A’);¢;.
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Questions — open problems

The additional information is not stemming from traded assets, i.e.
multi-asset digital options are not (liquidly) traded ...

Can we replace the additional information with traded asset prices, e.g.
basket options?
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Transport duality under option-implied information

Aim: upper bound - superhedging strategy for f(X) ~~ E[f(X)]

Classical ingredients:

= Y1,...,%q¢ : R = R bounded, measurable functions (‘put options’)
m vy,...,Vq marginal distributions, p joint distribution
Then

Sg'[i/fd,u:inf{/i/hdw+"'+/¢dd7/d:1/11+"‘+7/)d2f}
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Transport duality under option-implied information

Aim: upper bound - superhedging strategy for f(X) ~~ E[f(X)]

Classical ingredients:

= Y1,...,%q¢ : R = R bounded, measurable functions (‘put options’)
m vy,...,Vq marginal distributions, p joint distribution
Then

sgp/fd,tL:inf{/ilhdm+'~+/¢ddl/di¢1+"'+7/)d2f}
ue...

New ingredients
m p; price of multi-asset option with payoff ¢;

m b; amount invested in ¢;
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Transport duality under option-implied information, Il

“Primal” side: consistent measures

QZ{MEP(Rd)3ﬂj:VjJ€J» and /d¢fdu=pi,i€I}
R

“Dual” side: trading strategies and cost

o(f) = {(zp,b) DY G+ b zf}

jET i€T

(4, b) = Z/ijdl/f + > bipi

jes i€z
Definition

A trading strategy (v, b) that satisfies

(v,b) € ©(c) and (3, b) = Z/R?ﬁjdl/j + Z bipi <0

jeT i€eZ

for some € > 0, is called uniform strong arbitrage.
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Transport duality under option-implied information, Il

Theorem (Fundamental Theorem)

There does not exist a uniform strong arbitrage strategy in the market if and only if
the set Q is non empty.

Theorem (Superhedging Duality)

Letf : RY — R be a continuous and bounded function. Assuming there does not exist
uniform strong arbitrage in the market, then

max [ fau=inf {mw.b): (. 5) € ©(N}
2 d(f)
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Numerical scheme — penalization and neural networks
Eckstein & Kupper (AMO, 2019)

We would like to approximate the function

O(f) = inf{Z/wjduj-l-z:bipi‘Z?/’/-l-Zb@i Zf}
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Numerical scheme — penalization and neural networks
Eckstein & Kupper (AMO, 2019)

We would like to approximate the function

o(f) = inf{Z/wjdyj+2i:b,-p;‘z¢j+zbi¢i Zf}

Step 1: Neural network approximation

i€Z jeTJ i€T
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Numerical scheme — penalization and neural networks
Eckstein & Kupper (AMO, 2019)

We would like to approximate the function

®(f) = inf { Z/d}jd’/j + Zbip;‘ Do+ bid Zf}
J i
Step 1: Neural network approximation

i€Z jeTJ i€T

Step 2: Penalization

Z/wjdv,- +y bipi+ /ﬁv <f - - Zb@-) da}.

jET i€ET €T i€ET

¢$,’Y(.f) = ¢]i27flm{
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Numerical results, |

Convergence

m 3 assets; Black-Scholes dynamics with Gaussian copula

m Additional information (¢) and payoff (f): call-on-max, i.e.

Option price(upper)

(max(s', %, 8%) — k,0)"

Base
Case 1
Case 2
Case 3
Case 4
---- Reference

5000 10000 15000 20000
iterations

Figure: Bounds on option prices
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Numerical results, I

3 assets; impact of additional information

0]

Base case: only the three marginal distributions are known.

Case 1: Base plus additional traded two-asset call-on-max options with payoff

function
d1(x) = (X1 VX, — K)Jr, K=6.

Case 2: Case 1 plus additional traded two-asset call-on-max options with
payoff function
¢2(X): (Xz\/Xg—K)+, K = 6.

Case 3: Case 2 plus additional traded two-asset call-on-max options with
payoff function

p(x)=(xaVx—K), K={567}

Case 4: Case 3 plus additional traded three-asset call-on-max options with
payoff function

da(x) = (x1 VXV x3 — K)+, K=1{5,7}.
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Numerical results, Il (cont’d)

3 assets; impact of additional information

Case 5: Base case plus 5 more options with payoff ¢ and strike prices
K = {6,9,11,13,15}.

Case 6: Case 5 plus 4 more options with payoff ¢, and strike prices
K = {6,11,13,15}.

Case 7: Case 6 plus 5 more options with payoff ¢; and strike prices
K ={5,6,7,11,13}.

@ Case 8: Case 7 plus 2 more options with payoff ¢, and strike prices K = {5,7}.
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Numerical results, Il (cont’d)

3 assets; impact of additional information

—— Base —— Base
12 —— Casel 12 —— Case5
— Case2 — Case 6
10 —— Case3 10 —— Case7
4] Case 4 [} Case 8
‘:’ 8 Reference E 8 Reference
Q o
S s
26 26
Q Q
o o
4 4
2 2
0 0

14

6 8 10
strike price

12 14

6 8 10
strike price

12 14

Figure: Model-free bounds for various strikes using Cases 1-4 on the left, and Cases 5-8 on

the right.
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Numerical results, Il

6 assets; impact of additional information

Base case: only the six marginal distributions are known.

Case 1: Base plus call-on-min options with payoff (x; A -+ A xs — K)* for 8
strike prices

K ={6.5,7.5,8.5,9.5,10.5, 11.5, 12.5, 13.5}.

Case 2: Case 1 plus call-on-max options with payoff (x; V - - V x, — K)™ for 8
strike prices

K ={6.5,7.5,8.5,9.5,10.5, 11.5, 12.5, 13.5}.

Case 3: Case 2 plus basket options with payoff
1 + . . .
(§Zx;— K) forie {1,...,5}, ie{2,...,6}, ic{1,2,3,5,6},
1

each with 8 strike prices K = {6.6,7.6,8.6,9.6, 10.6, 11.6, 12.6, 13.6}.
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Numerical results, 1l (cont’d)

6 assets; impact of additional information

4.0
—— Base
3.5 — Casel
— Case 2
3.0 Case 3

*  Reference

g
wn

option price
= N
n o

80 85 90 95 100 105 11.0 115 120
strike price

Figure: Model-free bounds for various strikes using the setting 0-3.
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Numerical results, 1l (cont’d)
6 assets; impact of additional information
Case 4: Base plus three put-on-min options with payoff (K — x; A x;)" for
{i,j} € {{1,2},{3,4},{5,6} }, each with 8 strike prices
K ={6.75,7.75,8.75,9.75,10.75, 11.75, 12.75, 13.75}.

Case 5: Case 4 plus call-on-min options with payoff (x; A -+ A xs — K)* for 8
strike prices

K = {6.5,7.5,8.5,9.5,10.5, 11.5, 12.5, 13.5}.

@ Case 6: Case 5 plus call-on-max options with payoff (x; V - - V x; — K)™ for 8
strike prices

K = {6.5,7.5,8.5,9.5,10.5, 1.5, 12.5, 13.5}.
Case 7: Case 6 plus basket options with payoff

1 o . .
(gZX,'—K) forie{1,...,5}, ie{2,...,6}, ic{1,2,3,5,6},

each with 8 strike prices K = {6.6,7.6,8.6,9.6, 10.6, 11.6, 12.6, 13.6}.
| Case 8: Base plus basket options with payoff

1 +
(gzx,-—K) forie {1,...,5}, i€ {2,...,6}, ic{1,23,5,6},

each with 8 strike prices K = {6.6,7.6,8.6,9.6,10.6, 11.6, 12.6, 13.6}.
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Numerical results, 1l (cont’d)

6 assets; impact of relevant information

4.0
—— Base
3.5 —— Case 4
—— Case 6
3.0 — Case7
—e— Case 8
*

g
wn

Reference

option price
= N
n o

80 85 90 95 100 105 11.0 115 120
strike price

Figure: Model-free bounds for various strikes using the setting 0, 4-8.
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Computational times

# Assets  Time (sec)

6 498
15 921
18 1107
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Table: Dimension vs computational time.
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