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European Plain Vanilla Put Option for the Heston Model

▶ exercise date T

▶ underlying price S, strike K ∈ R+

▶ payoff function ϕ(S) = max(K − S, 0) =: (K − S)+, for S ≥ 0

▶ Heston model [Heston (1993)]{
dSt = (r − q)St dt+

√
νtSt dW

S
t , S0 > 0,

dνt = κ(µ− νt) dt+ σ
√
νt dW

ν
t , ν0 > 0,

▶ riskless interest rate r, dividend rate q

▶ variance ν, mean reversion rate κ, long-term mean µ,
volatility-of-variance σ

▶ dWS
t , dW ν

t Brownian motions, correlated by ρ ∈ [−1, 1]

▶ Feller condition: κµ− 1
2σ

2 ≥ 0
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Heston PDE and its supplied boundary condition

Heston PDE for pricing a vanilla put option Ṽ (S, ν, t)

Ṽt +
1

2
S2νṼSS +

1

2
σ2νṼνν + ρσνSṼSν + (r − q)SṼS + κ(µ− ν)Ṽν − rṼ = 0

with terminal condition (payoff of put option)

ϕ(S) = max(K − S, 0)

and boundary conditions proposed by Heston [Heston (1993)]

S = 0 : Ṽ = K exp
(
−r(T − t)

)
S → ∞ : Ṽ = 0

ν = 0 : Ṽt + rSṼS + κµṼν − rṼ = 0

ν → ∞ : Ṽ = K exp
(
−r(T − t)

)
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log-transformed Heston PDE

Apply the following transformations

▶ log-transformation asset x = log(S)

▶ time reversal τ := T − t to obtain forward-in-time PDE

▶ V (x, ν, τ) = Ṽ (S, ν, t)

and obtain log-transformed Heston PDE

Vτ =
ν

2
Vxx +

1

2
σ2νVνν +

(
r − q − ν

2

)
Vx + κ(µ− ν)Vν + σνρVxν − rV

with initial condition

V (x, ν, 0) = ϕ̃(x) = max(K − exp(x), 0)

and boundary conditions

▶ for x→ −∞ : V = K exp(−rτ)
▶ for x→ ∞ : V = 0

▶ for ν → 0 : rV = (r − q)Vx + κµVν − Vτ
▶ for ν → ∞ : V = K exp(−rτ)
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Fichera Theory

• Parabolic PDE has a singularity at ν = 0

Vτ =
ν

2
Vxx +

1

2
σ2νVνν + (r − q − ν

2
)Vx + κ(µ− ν)Vν + σνρVxν − rV

• It reduces to hyperbolic PDE

Vτ = (r − q)Vx + κµVν +−rV

• For hyperbolic PDEs the boundary flow can be computed explicitly
• We use Fichera theory to determine the need of boundary conditions
[Fichera (1963)]
⇝ Heston PDE is rewritten in divergent form

Vτ −∇ ·A∇V + b⃗∇V − rV = 0

with

A =
1

2
ν

(
σ2 σρ
σρ 1

)
, b⃗ = −

(
κ(µ− ν)− 1

2σ
2

r − q − ν
2 − 1

2σρ

)
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Fichera Theory w.r.t. the variance

For the variance ν = 0

b⃗ = −

(
κ(µ− ν)− 1

2σ
2

r − q − ν
2 − 1

2σρ

)
, n⃗ =

(
−1

0

)
the Fichera condition is given by

b(ν) = lim
ν→0+

b⃗ · n⃗ = lim
ν→0+

(
κ(µ− ν)− 1

2
σ2 − 1

2
ρσν

)
= κµ− 1

2
σ2

It follows

▶ if b(ν) ≥ 0 (outflow boundary) we must not supply any BCs at ν = 0

▶ if b(ν) < 0 (inflow boundary) we have to supply BCs at ν = 0

• Outflow boundary if and only if the Feller condition is fulfilled
(which is assumed in the sequel)

• Note: we have to supply a numerical closure boundary condition later
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Parameter calibration

▶ Goal: minimize the cost functional

J(V, ξ) =
1

2

∫ T

0

∥V − Vdata∥2 dt

V is computed using parameter set ξ = (κ, µ, σ, ρ)

▶ Lagrange multipliers ψ = (φ,φa, φb, φc, φd)

▶ Domain Ω = Ω(x,ν) = (−∞,∞)x × (0,∞)ν
▶ Partition boundary Γ = ∂Ω into

Γa = ∂Ω ∩ {x = −∞}, Γb = ∂Ω ∩ {x = ∞}
Γc = ∂Ω ∩ {ν = 0}, Γd = ∂Ω ∩ {ν = ∞}

▶ regarding Heston model in divergent form

∂V

∂τ
−∇ ·A∇V + b⃗ · ∇V + rV = 0
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Constraint operator e for the Lagrangian

〈
e(V, ξ), ψ

〉
=

∫ T

0

∫
Ω̃

[∂V
∂τ

−∇ ·A∇V + b⃗ · ∇V + rV
]
φdzdτ︸ ︷︷ ︸

=T

+

∫ T

0

∫
Γa

[
V −K exp(−rτ)

]
φa dsdτ︸ ︷︷ ︸

Ba

+

∫ T

0

∫
Γb

[
V −K exp(−rτ)

]
φa dsdτ︸ ︷︷ ︸

Bb

+

∫ T

0

∫
Γd

[
V −K exp(−rτ)

]
φd dsdτ︸ ︷︷ ︸

Bd

▶ Γc: Due to an pure outflow boundary Ω̃ = Ω ∪ Γc
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Lagrangian for the parameter calibration

▶ Lagrangian

L(V, ξ, ψ) = J(V, ξ)−
〈
e(V, ξ), ψ

〉
▶ first-order optimality conditions [Hinze (2009)]

0 = dV L(V, ξ, ψ)[h] = dV J(V, ξ)[h]− dV
〈
e(V, ξ), ψ

〉
[h]

▶ Computation of dV J(V, ξ)

J(V, ξ) =
1

2

∫ T

0

∫
Ω

(V − Vdata)
2 dzdτ

dV J(V, ξ)[h] =

∫ T

0

∫
Ω

(V − Vdata) dzdτ
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Computation of dV ⟨e(V, ξ), ψ⟩[h]

Using Green’s first identity, we rewrite T

T =

∫ T

0

∫
Ω̃

[∂V
∂τ

−∇ ·A∇V + b⃗ · ∇V + rV
]
φdzdτ

=

[∫
Ω̃

φhdz

]τ=T

τ=0︸ ︷︷ ︸
=0

+

∫ T

0

∫
Ω̃

V
[
−∂φ
∂τ

−∇ ·A⊤∇φ− b⃗ · ∇φ+ (r −∇ · b⃗)φ︸ ︷︷ ︸
=Lφ

]
dzdτ

+

∫ T

0

∫
Γa∪Γb∪Γd

([
(A⊤∇φ) · n⃗+ (⃗b · n⃗)φ

]
V − (A∇V ) · n⃗φ

)
dsdτ
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Overall

Including the boundary condition leads to

dV ⟨e(V, u), ψ⟩[h] =
∫ T

0

∫
Ω̃

h
(
−∂φ
∂τ

+ Lφ
)
dz

+

∫ T

0

(∫
Γa

hφa ds+

∫
Γb

hφb ds+

∫
Γd

hφd ds

)
dτ︸ ︷︷ ︸

B1

+

∫ T

0

∫
Γa∪Γb∪Γd

[(A⊤∇φ) · n⃗+ (⃗b · n⃗)φ]h ds− (A∇h) · n⃗φ dsdτ︸ ︷︷ ︸
B2

▶ B1 +B2 = 0 [Clevenhaus (2024)]

Anna Clevenhaus, Claudia Totzeck, Matthias Ehrhardt, A gradient based calibration of the Heston model with real data 13/33



Heston Model Gradient Descent Algorithm Discretization Numerical Results Conclusion

Derivation of the Adjoint

0 = dV J(V, u)[h]− dV
〈
e(V, u), ψ

〉
[h]

=

∫ T

0

∫
Ω

(V − Vdata)−
(
−∂φ
∂τ

+ Lφ
)
dzdτ

Using the Variational Lemma gives the (formal) Adjoint equation

∂φ

∂τ
+∇ ·A⊤∇φ+ b⃗ · ∇φ− (r −∇ · b)φ = −(V − Vdata) on Ω̃

(Analytic) Boundary Conditions:

▶ Γa: φ = 0

▶ Γb: φ = 0

▶ Γc: No analytic boundary conditions needed
(pure outflow boundary according to Fichera Theory)

▶ Γd: φ = 0
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Computation of the Gradient

• Recall: κ, µ, σ and ρ are parameters (and not variables!)
⇝ gradient for V, Vdata and φ w.r.t. those is zero and we can focus on∫ T

0

∫
Ω̂

−V
[1
2
νσ2φνν + νσρφxν +

1

2
νφxx + (σ2 − κ(µ− ν))φν

+(q − r +
ν

2
+ σρ)φx + (κ− r)φ

]
dzdτ

to derive the gradient, by computing the derivative to

▶ σ:
∫ T

0

∫
Ω̂
−V

[
νσφνν + νρφxν + 2σφν + ρφx

]
dzdτ

▶ ρ:
∫ T

0

∫
Ω̂
−V

[
νσφxν − σφx

]
dzdτ

▶ κ:
∫ T

0

∫
Ω̂
V
[
(µ− ν)φν − φ

]
dzdτ

▶ µ:
∫ T

0

∫
Ω̂
V
[
κφν

]
dzdτ

• Note: A time dependent gradient can be derived accordingly
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Amijo Rule

Since the parameter domain for κ, µ, σ, and ρ is restricted, and the
Feller condition must be satisfied, we use the projected Armijo rule
[Troeltzsch (2009)]

• projected Armijo rule:
we choose the maximum σk ∈ {1, 1/2, 1/4, . . .}, for which

f
(
P(ξk − σk∇f(ξk))

)
− f(ξk) ≤ − γ

σk
∥P(ξk − σk∇f(ξk))− ξk∥22

• γ ∈ (0, 1) is a numerical constant that depends on the problem and is
typically chosen to be γ = 10−4 (used later in numerical results)
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Gradient Descent Algorithm

Algorithm 1: Gradient descent method for Heston parameter calibration

Result: calibrated parameters for Heston model
- initialize parameters u0
while ∥gradient∥ > ϵ do

- solve the Heston PDE
- solve the formal Adjoint for the Heston PDE
- compute the gradient
- line search for step size
- update the parameter set

end
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Discretization

Spatial discretization

▶ xi = xmin + i∆x for i = 0, . . . , Nx with ∆x = (xmax − xmin)/Nx

▶ νj = νmin + j∆ν for j = 0, . . . , N with ∆ν = νmax/Nν

▶ (standard) second order FD stencils

Time discretization

▶ τk = k ·∆τ for k = 0, . . . , Nτ with ∆τ = T
Nτ

▶ Hundsdorfer-Verwer (HV) with θ = 0.75 [Hundsdorfer (2002)]
▶ Alternating Direction Implicit (ADI) scheme
▶ scheme of order two for any θ

• Note: For simplicity we use standard schemes, as the main focus is
on the gradient and later on the space mapping
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Boundary treatment for the variance

Based on the Fichera Theory, we need to supply a closure boundary
condition for ν → 0. As it is a pure outflow boundary, we use
▶ Extrapolation via Ghost layer
▶ at ν = νmin −∆ν

V (xi, νmin −∆ν , τk) = V (xi, νmin, τk)

As we truncate the domain at νmax = 1 and the proposed boundary
condition is given for ν → ∞, we also propose extrapolation
▶ Extrapolation via Ghost layer
▶ at ν = νmax +∆ν

V (x, νmax, τ) = V (x, νmax +∆ν , τ)

Following the approach of [Kutik (2015)], as it is the best closure
condition for the gradient method [Clevenhaus (2023)]
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Numerical adjustment of the cost functional

In the theoretical approach, the cost functional is given by

J(V, ξ) =
1

2

∫ T

0

∥V − Vdata∥2 dt

suggesting that the option price is given for all grid points in x and ν
direction and at all time instances t
• However, when using real data, we usually get only one option price at
a particular x̂ and maturity T , where K, r, and q are given

Ṽdata(x̂) = P
(
log(Ŝ),K, r, q, T

)
• Thus we search for the optimal parameters

ξ̂ = (ν̂, κ, µ, σ, ρ)

• desired option price is a discrete value within the Heston PDE solution
• Therefore, we adjust the cost functional by a minimal expansion of
the given value to an additional grid point by constant extrapolation,
s.t. the computation of the gradient is possible
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Concrete adjustment strategy

▶ Adjustment in space:
▶ Since there are no constraints on ν̂, we place ν̂ on a grid point to

avoid extrapolation w.r.t. ν
▶ We extrapolate the constant values over the grid points used within

the finite difference stencils in the gradient computation

▶ Adjustment w.r.t. time:
Since φ(x, ν, T ) = 0, we use the values at τk−2 and τk−1 for the
gradient computation

Resulting Vdata:
Let xk = x̂ and νl = ν̂, then set Vdata(xk±5, νl±5, T ) to Ṽdata(x̂) else
Vdata(xi, νj , τk) = 0
Overall the cost function is given by

Ĵ(V, ξ̂) =
1

2

∫ τk−1

τk−2

∥V − Vdata∥2 dt
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Numerical Setup

To obtain x̂ on a grid point, we set

▶ xmin = dx, xmax = 1.2 log(Ŝ), Nx = 120

▶ νmin = 0.01, νmax = 1, Nν = 100

▶ τmin = 0, τmax = 1, ∆τ = 0.45∆2
x

From the Nikkei Stock Index 300 on December 31, 2012, we obtain K, r
as well as q for T

κguess µguess σguess ρguess

Test 1 5.0 0.2 0.6 -0.3
Test 2 3.0 0.1 0.3 -0.2
Test 3 4.0 0.15 2 -0.4

Table: Test Cases for the calibration to market data
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Calibrated values

Figure: Calibrated constant values for the different test cases
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Relative cost functional improvement

δ = 100
J(V, ξ̂guess)− J(V, ξ̂calibrated)

J(V, ξ̂guess)

Figure: Relative cost functional improvement in percent for the different test
cases in a constant setting
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Mean Square Error

MSE =
1

N

N∑
i=0

(
Vdata

i − V i(ξ̂calibratedi )
)2

Test 1 Test 2 Test 3
MSE 5.2 · 10−3 7.9 · 10−3 3.5 · 10−3

Table: MSE for different strike values for the different test cases from the
Nikkei Stock Index 300 on December 31, 2012
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Conclusion

▶ The gradient algorithm works well with real market data

▶ The time dependent parameters need more real market data,
application to American option pricing or path-dependent options

▶ Next step: Apply the gradient method as a coarse solver within a
space mapping approach
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Conclusion

▶ The gradient algorithm works well with real market data

▶ The time dependent parameters need more real market data,
application to American option pricing or path-dependent options

▶ Next step: Apply the gradient method as a coarse solver within a
space mapping approach

Thank you for your attention!
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Basic Ideas of the Space Mapping Technique

This approach bridges the gap between accuracy and efficiency, making it
valuable in scenarios where computational costs matter

Problem Statement
we want to optimize some system for which we have a model hierarchy
consisting of a fine model (f) and a coarse model (c)

▶ fine model: accurate, but expensive to evaluate

▶ coarse model: less accurate, but cheap to evaluate

Assumption

Optimization of the coarse model is possible and comparatively cheap,
whereas the optimization of the fine model is very expensive or even
impossible due to the high cost of the fine model simulations

Anna Clevenhaus, Claudia Totzeck, Matthias Ehrhardt, A gradient based calibration of the Heston model with real data 30/33



Heston Model Gradient Descent Algorithm Discretization Numerical Results Conclusion

• fine model response f : X → Y , where X, Y Banach spaces
(X is called ’control space’, Y is called ’codomain’)
▶ fine model optimization problem

min
x∈X

J(f(x)) (F)

i.e., we minimize a cost functional J : Y → R which depends on f(x)

(F) is, in general, too complex and too expensive to be solved directly

• coarse model response c : X → Y . For simplicity, we assume that the
control spaces as well as the codomains of the model responses coincide

We approximate (F) by the coarse model optimization problem

min
x∈X

J(c(x)) (C)

To obtain well-posed problems, we assume that both (F) and (C)
have a unique minimizer. Consequently, we introduce

x∗f := argmin
x∈X

J(f(x)) and x∗c := argmin
x∈X

J(c(x)) (M)
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A naive approach for approximating x∗f is to solve (C) and use its
minimizer x∗c as approximation of x∗f .

The space mapping technique extends and generalizes this approach.

Space Mapping Function

We introduce the space mapping function s : X → X, xf 7→ s(xf), where

s(xf) := argmin
xc∈X

r
(
c(xc), f(xf)

)
(S)

with some misalignment function r : Y × Y → R, which is used to
measure the discrepancy between the fine and coarse model responses

To get a well-defined space mapping function, we assume that problem
(S) is well-posed, i.e., that it has a unique minimizer for all xf ∈ X.

Assumption: the misalignment function r is exact in the sense that

argmin
xc∈X

r
(
c(xc), c(z)

)
= z for all z ∈ X
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For a given fine model control xf , the space mapping function s computes
the best coarse model control xc such that the discrepancy between the
fine and coarse model responses f(xf) and c(xc) is minimized.

Assumption: coarse model is a suitable approximation of the fine model,
at least in the vicinity of their respective minimizers, i.e., c(x∗c) ≈ f(x∗f )

Under this assumption, we expect that

s(x∗f ) = argmin
xc∈X

r
(
c(xc), f(x

∗
f )
)
≈ argmin

xc∈X
r
(
c(xc), c(x

∗
c)
)
= x∗c

due to the exactness of the misalignment function.

⇝ fundamental idea of space mapping technique is to solve the equation

s(x∗f )− x∗c = 0
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